Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Latest Developments in Long-Wavelength and Very-Long-Wavelength Infrared Detection with p-on-n HgCdTe

  • 220 Accesses

  • 11 Citations


We report recent developments at Commissariat à l’Energie Atomique-Laboratoire d’Electronique des Technologies de l’Information Infrared Laboratory on the processing and characterization of p-on-n HgCdTe (MCT) planar infrared focal plane arrays (FPAs) operating in the long-wavelength infrared (LWIR) and very-long-wavelength infrared (VLWIR) spectral bands. The active layers in these FPAs were grown by liquid phase epitaxy (LPE) on a lattice-matched CdZnTe substrate. This technological process results in lower dark current and lower serial resistance than for n-on-p vacancy-doped architecture and thus is better adapted for lower flux detection or higher operating temperature. This architecture was evaluated for space applications in the LWIR and VLWIR spectral bands with cutoff wavelengths from 10 to 17 μm at 78 K. Innovations have been introduced to the technological process to form a heterojunction by use of an LPE growth technique. The initial objective was to reduce the dark current at low temperatures, by reducing the transition temperature from diffusion-limited to depletion-limited dark current. Another advantage is that the wider bandgap obtained in the vicinity of the junction ensures less sensitivity to the defects present at the interface between MCT and passivation layers. Electro-optical characterization of p-on-n photodiodes was performed on quarter video graphics array format FPAs with 25 and 30 μm pixel pitches. The results revealed excellent operabilities in current and responsivity, with low dispersion, and noise limited by current shot noise. Studies performed on the dark current show that dark current densities at 78 K are consistent with the heuristic prediction law “Rule 07”. Below this temperature, dark current varies as a pure diffusion current for a variety of devices from different manufacturers, introducing a temperature range limitation in the description of the “Rule 07” law.

This is a preview of subscription content, log in to check access.


  1. 1.

    L. Mollard, G. Destefanis, J. Rothman, N. Baier, P. Ballet, and J.W. Bourgeois, et al., Proc. SPIE 6940, 69400F (2008).

  2. 2.

    L. Mollard, G. Destefanis, J. Rothman, N. Baier, P. Bisotto, and P. Ballet, et al., J. Electron. Mater. 38, 1805 (2009).

  3. 3.

    L.O. Bubulac, J. Cryst. Growth 86, 723 (1988).

  4. 4.

    L.O. Bubulac, D.S. Lo, W.E. Tennant, D.D. Edwall, J.C. Chen, J. Ratusnik, J.C. Robinson, and G. Bostrup, Appl. Phys. Lett. 50, 1586 (1987).

  5. 5.

    A. Manissadjian, Y. Reibel, L. Rubaldo, L. Mollard, and D. Brelier, Proc. SPIE 8353, 835334 (2012).

  6. 6.

    O. Gravrand, O. Boulade, V. Moreau, E. Sanson, and G. Destefanis, J. Electron. Mater. 41, 2686 (2012).

  7. 7.

    N. Baier, L. Mollard, O. Gravrand, G. Bourgeois, J.-P. Zanatta, G. Destefanis, O. Boulade, V. Moreau, F. Pinsard, L. Tauziède, A. Bardoux, L. Rubaldo, A. Kerlain, and J.-C. Peyrar, Proc. SPIE 8704, 87042P (2013).

  8. 8.

    W.E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, J. Electron. Mater. 37, 1406 (2008).

  9. 9.

    W.E. Tennant, J. Electron. Mater. 37, 1030 (2010).

  10. 10.

    N. Baier, L. Mollard, J. Rothman, G. Destefanis, P. Ballet, and J.P. Bourgeois, et al., Proc. SPIE 7298, 729823 (2009).

  11. 11.

    L. Mollard, G. Destefanis, J.P. Bourgeois, A. Ferron, N. Baier, and O. Gravrand, et al., J. Electron. Mater. 40, 1830 (2011).

  12. 12.

    J. Rothman, J. Electron. Mater. 35, 1174 (2006).

  13. 13.

    O. Gravrand, E. Borniol, S. Bisotto, L. Mollard, and G. Destefanis, J. Electron. Mater. 36, 981 (2007). doi:10.1007/s11664-007-0151-3.

  14. 14.

    O. Gravrand, L. Mollard, C. Largeron, N. Baier, E. DeBorniol, and P. Chorier, J. Electron. Mater. 38, 1733 (2009). doi:10.1007/s11664-009-0795-2.

  15. 15.

    N. Baier, L. Mollard, O. Gravrand, G. Bourgeois, J.P. Zanatta, and G. Destefanis, et al., Proc. SPIE 8353, 83532N (2012).

  16. 16.

    L. Puig, K.G. Isaak, M. Linder, I. Escudero, D. Martin, P.E. Crouzet, L. Gaspar Venancio, and A. Zuccaro Marchi, Proc. SPIE 8442, 844206 (2012).

  17. 17.

    C. McMurtry, D. Lee, J. Beletic, C.A. Chen, R.T. Demers, M. Dorn, D. Edwall, C. Bacon Fazar, W.J. Forrest, F. Liu, A.K. Mainzer, J.L. Pipher, and A. Yulius, Opt. Eng. 52, 091804-1 (2013).

  18. 18.

    C. Fulk, W. Radford, D. Buell, J. Bangs, and K. Rybnicek, J.␣Electron. Mater. (2015). doi:10.1007/s11664-015-3740-6.

  19. 19.

    G.L. Hansen, J. Appl. Phys. 53, 7099 (1982).

Download references


The authors would like to thank the French “Centre National d’Etudes Spatiales” (CNES) and LabEx FOCUS (ANR-11-LABX-0013) for their support of some of this work.

Author information

Correspondence to N. Baier.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baier, N., Cervera, C., Gravrand, O. et al. Latest Developments in Long-Wavelength and Very-Long-Wavelength Infrared Detection with p-on-n HgCdTe. Journal of Elec Materi 44, 3144–3150 (2015). https://doi.org/10.1007/s11664-015-3851-0

Download citation

Key words

  • IR sensors
  • HgCdTe
  • dark current
  • IR space applications
  • very-long-wavelength IR