Skip to main content
Log in

Electrodeposited ZnS Precursor Layer with Improved Electrooptical Properties for Efficient Cu2ZnSnS4 Thin-Film Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc sulfide (ZnS) thin films were prepared on indium tin oxide-coated glass by electrodeposition using aqueous zinc sulfate, thiourea, and ammonia solutions at 80°C. The effects of sulfurization at temperatures of 350°C, 400°C, 450°C, and 500°C on the morphological, structural, optical, and electrical properties of the ZnS thin films were investigated. X-ray diffraction analysis showed that the ZnS thin films exhibited cubic zincblende structure with preferred (111) orientation. The film crystallization improved with increasing annealing temperature. Field-emission scanning electron microscopy images showed that the film morphology became more compact and uniform with increasing annealing temperature. The percentage of sulfur in the ZnS thin films increased after sulfurization until a stoichiometric S/Zn ratio was achieved at 500°C. The annealed films showed good adhesion to the glass substrates, with moderate transmittance (85%) in the visible region. Based on absorption measurements, the direct bandgap increased from 3.71 eV to 3.79 eV with annealing temperature, which is attributed to the change of the buffer material composition and suitable crystal surface properties for effective pn junction formation. The ZnS thin films were used as a buffer layer in thin-film solar cells with the structure of soda-lime glass/Mo/Cu2ZnSnS4/ZnS/ZnO/Al grid. The best solar cell efficiency was 1.86%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Pang, Y. Yuan, Y. Zhou, J. Lian, L. Cao, J. Zhang, and X. Zhou, J. Lumin. 122, 587 (2007).

    Article  Google Scholar 

  2. I. Oladeji, L. Chow, J. Liu, W. Chu, A. Bustamante, C. Fredricksen, and A. Schulte, Thin Solid Films 359, 154 (2000).

    Article  Google Scholar 

  3. K.V. Khot, S.S. Mali, N.B. Pawar, R.R. Kharade, R.M. Mane, V.V. Kondalkar, P.B. Patil, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, and P.N. Bhosale, New J. Chem. 38, 5964 (2014).

    Article  Google Scholar 

  4. K. Khot, S. Mali, R. Kharade, R. Mane, P. Patil, C. Hong, J. Kim, J. Heo, and P. Bhosale, J. Mater. Sci. 25, 5606 (2014).

    Google Scholar 

  5. A. Ennaoui, W. Eisele, M. Lux-Steiner, T. Niesen, and F. Karg, Thin Solid Films 431, 335 (2003).

    Article  Google Scholar 

  6. K. Khot, S. Mali, N. Pawar, R. Mane, V. Kondalkar, V. Ghanwat, P. Patil, C.K. Hong, J.H. Kim, and J. Heo, J. Mater. Sci. 25, 3762 (2014).

    Google Scholar 

  7. J. Hu, G. Wang, C. Guo, D. Li, L. Zhang, and J. Zhao, J. Lumin. 122, 172 (2007).

    Article  Google Scholar 

  8. A.N. Yazici, M. Öztaş, and M. Bedır, J. Lumin. 104, 115 (2003).

    Article  Google Scholar 

  9. C. Goebbert, G. Gasparro, T. Schuler, T. Krajewski, and M.A. Aegerter, J. Sol-Gel. Sci. Technol. 19, 435 (2000).

    Article  Google Scholar 

  10. K. Yeung, W. Tsang, C. Mak, and K. Wong, J. Appl. Phys. 92, 3636 (2002).

    Article  Google Scholar 

  11. L.-X. Shao, K.-H. Chang, and H.-L. Hwang, Appl. Surf. Sci. 212, 305 (2003).

    Article  Google Scholar 

  12. T. Nakada, M. Mizutani, Y. Hagiwara, and A. Kunioka, Solar Energy Mater. Solar Cells 67, 255 (2001).

    Article  Google Scholar 

  13. R. Mane and C. Lokhande, Mater. Chem. Phys. 65, 1 (2000).

    Article  Google Scholar 

  14. G. Agawane, S.W. Shin, A. Moholkar, K. Gurav, J.H. Yun, J.Y. Lee, and J.H. Kim, J. Alloys Compd. 535, 53 (2012).

    Article  Google Scholar 

  15. E. Mkawi, K. Ibrahim, M. Ali, M. Farrukh, and A. Mohamed, J. Mater. Sci. 25, 857 (2014).

    Google Scholar 

  16. D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, Chem. Phys. Lett. 325, 340 (2000).

    Article  Google Scholar 

  17. T.B. Nasr, N. Kamoun, and C. Guasch, Mater. Chem. Phys. 96, 84 (2006).

    Article  Google Scholar 

  18. S.W. Shin, S. Ra Kang, J. Ho Yun, A. Moholkar, J.-H. Moon, J. Yong Lee, and J.H. Kim, Solar Energy Mater. Solar Cells 95, 856 (2011).

    Article  Google Scholar 

  19. D.C. Onwudiwe and P.A. Ajibade, Int. J. Mol. Sci. 12, 5538 (2011).

    Article  Google Scholar 

  20. N. Kumbhojkar, V. Nikesh, A. Kshirsagar, and S. Mahamuni, J. Appl. Phys. 88, 6260 (2000).

    Article  Google Scholar 

  21. T. Gfroerer, Encyclopedia of Analytical Chemistry, ed. R.A. Meyers (Chichester: Wiley, 2000),

    Google Scholar 

  22. J. Kim, C. Park, S.M. Pawar, A.I. Inamdar, Y. Jo, J. Han, J. Hong, Y.S. Park, D.Y. Kim, W. Jung, H. Kim, and H. Im, Thin Solid Films 566, 88 (2014).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Nano-optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia under Grant No. 203/PSF-6721001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.M. Mkawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mkawi, E., Ibrahim, K., Ali, M. et al. Electrodeposited ZnS Precursor Layer with Improved Electrooptical Properties for Efficient Cu2ZnSnS4 Thin-Film Solar Cells. J. Electron. Mater. 44, 3380–3387 (2015). https://doi.org/10.1007/s11664-015-3849-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3849-7

Keywords

Navigation