Skip to main content
Log in

Structural, Electrical, and Magnetic Properties of Mechanosynthesized (1−x)BiFeO3-xBaMnO3 (0 ≤ x ≤ 0.15) Multiferroic System

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The multiferroic properties of (1−x)BiFeO3-xBaMnO3 (BBFMO; x = 0.00, 0.05, 0.10, 0.15) solid solutions, prepared by a mechanosynthesis technique, have been investigated. X-ray diffraction analysis showed that all the samples crystallized in the perovskite structure. The presence of infrared absorption bands around 442 cm−1 and 550 cm−1 supports the formation of perovskite structure of the system. Scanning electron microscopy (SEM) studies of the materials at room temperature showed that the average grain size of the samples decreased gradually with increasing BaMnO3 content in the BBFMO system. Detailed studies of impedance parameters revealed that the electrical properties related to the impedance of the solid solutions were strongly dependent on temperature and frequency. Ferroelectric measurements revealed that the electric polarization was significantly enhanced with increasing BaMnO3 content in the solid solution. The room-temperature MH curves of the samples suggested that, with increasing BaMnO3 content in the system, the magnetic coercive field decreased, thus enhancing the ferromagnetic property of the prepared solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.A. Spaldin and M. Fiebig, Science 309, 391 (2005).

    Article  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442, 759 (2006).

    Article  Google Scholar 

  3. S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).

    Article  Google Scholar 

  4. T. Kimura, T. Goto, H. Shinatani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).

    Article  Google Scholar 

  5. T. Matsui, H. Tanaka, N. Fujimura, T. Ito, H. Mabuchi, and K. Morii, Appl. Phys. Lett. 81, 2764 (2002).

    Article  Google Scholar 

  6. T. Kimura, G. Lawes, and A.P. Ramirez, Phys. Rev. Lett. 94, 137201 (2005).

    Article  Google Scholar 

  7. G. Catalan and J.F. Scott, Adv. Mater. 21, 2463 (2009).

    Article  Google Scholar 

  8. P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, J. Phys. C Solid State Phys. 13, 1931 (1980).

    Article  Google Scholar 

  9. C. Ederer and N.A. Spaldin, Phys. Rev. B 71, 060401 (2005).

    Article  Google Scholar 

  10. C. Michel, J.M. Moreau, G.D. Achenbach, R. Gerson, and W.J. James, Solid State Commun. 7, 865 (1969).

    Article  Google Scholar 

  11. S.T. Zhang, L.H. Pang, Y. Zhang, M.H. Lu, and Y.F. Chen, J. Appl. Phys. 100, 114108 (2006).

    Article  Google Scholar 

  12. Y.K. Jun, W.T. Moon, C.M. Chang, H.S. Kim, H.S. Ryu, J.W. Kim, K.H. Kim, and H.S. Hong, Solid State Commun. 135, 133 (2005).

    Article  Google Scholar 

  13. P.A. Jha, P.K. Jha, A.K. Jha, and R.K. Dwivedi, Mater. Res. Bull. 48, 101 (2013).

    Article  Google Scholar 

  14. H. Amorın, C. Correas, P. Ramos, T. Hungrıa, A. Castro, and M. Alguero, J. Appl. Phys. 101, 172908 (2012).

    Google Scholar 

  15. S.-T. Zhang, L.-Y. Ding, M.-H. Lu, Z.-L. Luo, and Y.-F. Chen, Solid State Commun. 148, 420 (2008).

    Article  Google Scholar 

  16. Y. Ma and X.M. Chen, J. Appl. Phys. 105, 054107 (2009).

    Article  Google Scholar 

  17. K.C. Verma and R.K. Kotnala, Solid State Commun. 151, 920 (2011).

    Article  Google Scholar 

  18. N. Wang, C.G. Hu, C.H. Xia, B. Feng, Z.W. Zhang, Y. Xi, and Y.F. Xiong, Appl. Phys. Lett. 90, 163111 (2007).

    Article  Google Scholar 

  19. K. Hayata, M.A. Rafiq, A. Rahman, A.A. Khan, and M.M. Hasan, Prog. Nat. Sci. Mater. Int. 23, 388 (2013).

    Article  Google Scholar 

  20. S. Satapathy, M.K. Singh, P. Pandit, and P.K. Gupta, Appl. Phys. Lett. 100, 042904 (2012).

    Article  Google Scholar 

  21. F. Kubel and H. Schmid, Acta Cryst. B46, 698 (1990).

    Article  Google Scholar 

  22. A.M. Kadomtseva, A.K. Zvezdin, Y.F. Popev, A.P. Pyatakov, and G.P. Vorobev, JETP Lett. 79, 571 (2004).

    Article  Google Scholar 

  23. POWDMULT: An interactive powder diffraction data interpretation and indexing program Version 2.1, E. Wu, School of Physical Sciences, Flinders University of South Australia, Bradford Park, SA 5042, Australia.

  24. C.-W. Baeka, N.-K. Oh, G. Han, W.-H. Yoon, J.W. Kim, J.-J. Choi, B.-D. Han, D.-S. Park, K.-D. Sung, J.-H. Jung, D.Y. Jeong, J.-J. Kim, and J. Ryu, Mater. Sci. Eng. B 177, 451 (2012).

    Article  Google Scholar 

  25. K. Saravana Kumar, C. Venkateswaran, D. Kannan, Brajesh Tiwari, and M.S. RamachandraRao, J. Phys. D Appl. Phys. 45, 415302 (2012).

    Article  Google Scholar 

  26. M. Valant, A.K. Axelsson, and N. Alford, Chem. Mater. 19, 5431 (2007).

    Article  Google Scholar 

  27. P. Kumar and M. Kar, AIP Conf. Proc. 1536, 1041 (2013).

    Article  Google Scholar 

  28. B. Bhushan, A. Basumallick, N.Y. Vasanthacharya, S. Kumar, and D. Das, Solid State Sci. 12, 1063 (2010).

    Article  Google Scholar 

  29. G.V. Subba Rao and C.N.R. Rao, Appl. Spectrosc. 24, 436 (1970).

    Article  Google Scholar 

  30. R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary, and A. Banerjee, J Phys. Condens. Matter 20, 045218 (2008).

    Article  Google Scholar 

  31. G.S. Arya, R.K. Sharma, and N.S. Negi, Mater. Lett. 93, 341 (2013).

    Article  Google Scholar 

  32. M. Noda, Y. Matsumuro, H. Sugiyama, and M. Okuyama, Jpn. J. Appl. Phys. 38, 2275 (1999).

    Article  Google Scholar 

  33. C. Wang, J. Wang, H. Chen, W. Wang, W. Su, G. Zang, and P. Qi, J. Phys. D Appl. Phys. 36, 3069 (2003).

    Article  Google Scholar 

  34. S.R. Das, P. Bhattacharya, R.N.P. Choudhary, and R.S. Katiyar, J. Appl. Phys. 99, 066107 (2006).

    Article  Google Scholar 

  35. C.G. Koops, Phys. Rev. 83, 121 (1951).

    Article  Google Scholar 

  36. R.J.D. Tilley, Nature 269, 229 (1977).

    Article  Google Scholar 

  37. B. Pati, R.N.P. Choudhary, P.R. Das, B.N. Parida, and R. Padhee, J. Alloys Compd. 592, 6 (2014).

    Article  Google Scholar 

  38. N. Singh, A. Agarwal, S. Sanghi, and P. Singh, J. Magn. Magn. Mater. 323, 486 (2011).

    Article  Google Scholar 

  39. J.R. Macdonald, Impedance Spectroscopy (New York: Wiley, 1987)

  40. H. Jain and C.H. Hsieh, J. Non-Cryst. Solids 172, 1408 (1994).

    Article  Google Scholar 

  41. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, and R. Ramesh, Nat. Mater. 5, 823 (2006).

    Article  Google Scholar 

  42. Z.X. Cheng, A.H. Li, X.L. Wang, S.X. Dou, K. Ozawa, H. Kimura, S.J. Zhang, and T.R. Shrout, J. Appl. Phys. 103, 07E507 (2008).

    Google Scholar 

  43. T.J. Yang, V. Gopalan, P.J. Swart, and U. Mohideen, Phys. Rev. Lett. 82, 20 (1999).

    Google Scholar 

  44. N. Kumar, A. Ghosh, and R.N.P. Choudhary, Mater. Chem. Phys. 130, 381 (2011).

    Article  Google Scholar 

  45. S. Sahoo, R.N.P. Choudhary, and B.K. Mathur, Phys. Status Solidi 246, 1377 (2009).

    Article  Google Scholar 

  46. H. Deng, M. Zhang, Q. Zhong, J. Wei, and H. Yan, Ceram. Int. 40, 58869 (2014).

    Article  Google Scholar 

  47. J.S. Kim, C.I.I. Cheon, Y.N. Choi, and P.W. Jang, J. Appl. Phys. 93, 9263 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. B. B. Palei, IMMT Bhubaneswar for his kind help with x-ray diffraction (XRD) experiments, and to Dr. M.N. Goswami, Midnapore College, Midnapore for his kind help in carrying out FTIR studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoshna Rout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, J., Choudhary, R.N.P., Shannigrahi, S.R. et al. Structural, Electrical, and Magnetic Properties of Mechanosynthesized (1−x)BiFeO3-xBaMnO3 (0 ≤ x ≤ 0.15) Multiferroic System. J. Electron. Mater. 44, 3811–3818 (2015). https://doi.org/10.1007/s11664-015-3843-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3843-0

Keywords

Navigation