Skip to main content
Log in

Preparation, Characterization, and Size Control of Chemically Synthesized CdS Nanoparticles Capped with Poly(ethylene glycol)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We prepared cadmium sulfide (CdS) nanoparticles of a specific size via chemical precipitation at room temperature and characterized them using high-resolution transmission electron microscopy, x-ray powder diffraction, ultraviolet–visible spectroscopy, and Fourier-transform infrared (FTIR) measurements. The results showed that the samples were grown with a cubic phase; the particle size could be changed from 2 nm to 4 nm by varying the molar ratios of the precursors (cadmium chloride and sodium sulfide) in the presence of poly(ethylene glycol) (PEG) as an effective capping agent. The optical bandgap of the synthesized nanoparticles was calculated and ranged from 2.73 eV to 2.92 eV depending on the particle size. A large blue-shift from the bulk bandgap (2.42 eV) was observed owing to the quantum size effect. Surface passivation and adsorption of PEG on the CdS nanoparticles was explained on the basis of FTIR measurements; two bands were observed at 476 cm–1 and 622 cm–1, corresponding to cadmium and sulfide stretching vibrations. We conclude that particle size can be controlled by varying the molar ratios of the precursors. Owing to the PEG encapsulation, the as-prepared samples were extremely stable over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Knauth and J. Schoonman, Nanocrystalline Metals and Oxides: Selected Properties and Applications (New York: Kluwer Academic, 2002), p. P1.

    Book  Google Scholar 

  2. B. Bhushan, Handbook of Nanotechnology, 3rd ed. (Berlin: Springer, 2010).

  3. P.S. Nair, T. Radhakrishinan, N. Revaprasadu, G.A. Kolawole, and P. O’Brien, Polyhedron 22, 3129 (2003).

    Article  Google Scholar 

  4. K.S. Haram, M.B. Quinn, and A.J. Bard, J. Am. Chem. Soc. 123, 8860 (2001).

    Article  Google Scholar 

  5. H. Zhao, E.P. Douglas, B.S. Harrison, and K.S. Schanze, Langmuir 17, 8428 (2001).

    Article  Google Scholar 

  6. P.M. Shumbula, M.J. Moloto, T.R. Tshikhudo, and M. Fernandes, S. Afr. J. Sci. 106, 1 (2010).

    Google Scholar 

  7. M. Achermann, M.A. Petruska, S. Kos, D.L. Smith, D.D. Koleske, and V.I. Klimov, Nature 429, 642 (2004).

    Article  Google Scholar 

  8. P. Alivisatos, Nat. Biotechnol. 22, 47 (2004).

    Article  Google Scholar 

  9. J. Dupont, G.S. Fonseca, A.P. Umpierre, P.F.P. Fichtner, and S.R. Teixeira, J. Am. Chem. Soc. 124, 4228 (2002).

    Article  Google Scholar 

  10. P. Praus, O. Kozak, K. Koci, A. Panacek, and R. Dvorsky, J. Colloid Interface Sci. 360, 574 (2011).

    Article  Google Scholar 

  11. B. Gao, Y.J. Kim, A.K. Chakraborty, and W.I. Lee, Appl. Catal. B 83, 202 (2008).

    Article  Google Scholar 

  12. A. Ulman, Chem. Rev. 96, 153 (1996).

    Article  Google Scholar 

  13. H. Tang, M. Yan, H. Zhang, M. Xia, and D. Yang, Mater. Lett. 59, 1024 (2005).

    Article  Google Scholar 

  14. P. Kumar, D. Kukkar, A. Deep, S.C. Sharma, and L.M. Bharadwaj, Adv. Mater. Lett. 3, 471 (2012).

    Google Scholar 

  15. N. Ramamurthy, G.R. Kumar, and G. Murugadoss, Nanosci. Nanotechnol. 1, 12 (2011).

    Google Scholar 

  16. M.J. Pawer and S.S. Chaure, Chalcogenide Lett. 12, 689 (2009).

    Google Scholar 

  17. K. Rajeshwar, N.R. de Tacconi, and C.R. Chenthamarakshan, Chem. Mater. 13, 2765 (2001).

    Article  Google Scholar 

  18. A.M. Acevedo, Sol. Energy Mater. Sol. Cells 90, 2213 (2006).

    Article  Google Scholar 

  19. H. Murai, T. Abe, J. Matsuda, H. Sato, S. Chiba, and Y. Kashiwaba, Appl. Surf. Sci. 244, 351 (2005).

    Article  Google Scholar 

  20. A. Mukherjee, B. Satpati, S.R. Bhattacharyya, R. Ghosh, and P. Mitra, Physica E 65, 51 (2015).

    Article  Google Scholar 

  21. R.R. Prabhu and M.A. Khadar, Pramana 65, 801 (2005).

    Article  Google Scholar 

  22. N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, Science 295, 1506 (2002).

    Article  Google Scholar 

  23. Y. Wang, S. Ramanathan, Q. Fan, F. Yun, H. Morkoc, and S. Bandyopadhyay, J. Nanosci. Nanotechnol. 6, 2077 (2006).

    Article  Google Scholar 

  24. A. Ponzoni, E. Comini, and G. Sberveglieri, Appl. Phys. Lett. 88, 203101 (2006).

    Article  Google Scholar 

  25. L. Wang, Y.S. Liu, X. Jiang, D.H. Qin, and Y. Cao, J. Phys. Chem. 111, 9538 (2007).

    Google Scholar 

  26. Y. Jun, Y. Jung, and J. Cheon, J. Am. Chem. Soc. 124, 615 (2002).

    Article  Google Scholar 

  27. L. Qi, H. Colfen, and M. Antonietti, Nano Lett. 1, 61 (2001).

    Article  Google Scholar 

  28. R.S. Dhage, A.H. Colorado, and H.T. Hahn, Mater. Res. 16, 504 (2013).

    Article  Google Scholar 

  29. A. Latkiwicz and W. Abinski, Mineral. Pol. 35, 23 (2004).

    Google Scholar 

  30. R.J. Traill and R.W. Boyle, Am. Mineral. 40, 555 (1955).

    Google Scholar 

  31. J.J. Tan, Y. Li, and G.F. Ji, Acta Phys. Pol. A120, 501 (2011).

    Google Scholar 

  32. R. Seoudi, M. Kamal, A.A. Shabaka, E.M. Abdelrazek, and W. Eisa, Synth. Met. 160, 479 (2010).

    Article  Google Scholar 

  33. M. Pal, N.R. Mathews, P. Santiago, and X. Mathew, J. Nanopart. Res. 14, 1 (2012).

    Google Scholar 

  34. E. Roduner, Chem. Soc. Rev. 35, 583 (2006).

    Article  Google Scholar 

  35. V.I. Klimov, Annu. Rev. Phys. Chem. 58, 635 (2007).

    Article  Google Scholar 

  36. L.E. Brus, J. Chem. Phys. 80, 4403 (1984).

    Article  Google Scholar 

  37. Y. Kayanuma, Phys. Rev. B 38, 9797 (1988).

    Article  Google Scholar 

  38. T.R. Ravindran, A.K. Arora, B. Balamurugan, and B.R. Mehta, Nanostruct. Mater. 11, 603 (1999).

    Article  Google Scholar 

  39. V. Singh and P. Chauhan, J. Phys. Chem. Solids 70, 1074 (2009).

    Article  Google Scholar 

  40. V. Singh, P.K. Sharma, and P. Chauhan, Mater. Charact. 62, 43 (2011).

    Article  Google Scholar 

  41. A.Q. Zhang, Q.Z. Tan, H.J. Li, L. Sui, D.J. Qian, and M. Chen, J. Nanopart. Res. 16, 2197 (2014).

    Article  Google Scholar 

  42. S. Tunc and O. Duman, Colloids Surf. A 37, 93 (2008).

    Article  Google Scholar 

  43. D. Philip, Spectrochim. Acta A 75, 1078 (2010).

    Article  Google Scholar 

  44. D. Philip, Spectrochim. Acta A 73, 650 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.R. Lashin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seoudi, R., Allehyani, S., Said, D. et al. Preparation, Characterization, and Size Control of Chemically Synthesized CdS Nanoparticles Capped with Poly(ethylene glycol). J. Electron. Mater. 44, 3367–3374 (2015). https://doi.org/10.1007/s11664-015-3838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3838-x

Keywords

Navigation