Skip to main content

Advertisement

Log in

Space-Charge Manipulation Under Sub-bandgap Illumination in Detector-Grade CdZnTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of sub-bandgap illumination on the charge transport process and detector performance were experimentally studied in detector-grade CdZnTe. Based on the resulting bulk resistivity and photocurrent response under sub-bandgap illumination, the variation of the deep-level occupation fraction was identified according to a modified Shockley–Read–Hall model. From laser-beam-induced transient current measurements, a decrease of negative space-charge density and consequently flattening of the electric field distribution were found under external sub-bandgap illumination, demonstrating a reduction of the active trap concentration. Furthermore, 241Am gamma-ray spectroscopy response measurements confirmed that simultaneous incidence of sub-bandgap light could significantly improve CdZnTe detector energy resolution and charge collection efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Trupke, M.A. Green, and P. Würfel, J. Appl. Phys. 92, 4117 (2002).

    Article  Google Scholar 

  2. M.A. Krainak, Conference on Laser & Electro-Optics (Baltimore, Maryland, 2005), paper CMGG4.

  3. A. Hoffman, A. Lafosse, and R. Azria, Phys. Rev. B 73, 085423 (2006).

    Article  Google Scholar 

  4. L. Szaro, Appl. Phys. A 207, 201 (1982).

    Article  Google Scholar 

  5. D. Vanmaekelbergh and L. van Pieterson, Phys. Rev. Lett. 80, 821 (1998).

    Article  Google Scholar 

  6. T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James, Mater. Sci. Eng. R Rep. 32, 103 (2001).

    Article  Google Scholar 

  7. A.E. Bolotnikov, S. Babalola, G.S. Camarda, Y. Cui, R. Gul, S.U. Egarievwe, P.M. Fochuk, M. Fuerstnau, J. Horace, A. Hossain, F. Jones, K.H. Kim, O.V. Kopach, B. McCall, L. Marchini, B. Raghothamachar, R. Taggart, G. Yang, L. Xu, and R.B. James, IEEE Trans. Nucl. Sci. 58, 1972 (2011).

    Article  Google Scholar 

  8. D. Bale and C. Szeles, Phys. Rev. B 77, 035205 (2008).

    Article  Google Scholar 

  9. A. Cola and I. Farella, Sensors (Basel) 13, 9414 (2013).

    Article  Google Scholar 

  10. M. Prokesch, D.S. Bale, and C. Szeles, IEEE Trans. Nucl. Sci. 57, 2397 (2010).

    Article  Google Scholar 

  11. L. Alekseeva, P. Dorogov, V. Ivanov, A. Loutchanski, L. Grigorjeva, and D. Millers, in 2011 Nuclear Science Symposium Conference Record (Valencia, 2011), p. 4562.

  12. A.L. Washington II, L.C. Teague, M.C. Duff, A. Burger, M. Groza, and V. Buliga, J. Appl. Phys. 111, 113715 (2012).

    Article  Google Scholar 

  13. P. Dorogov, V. Ivanov, A. Loutchanski, L. Grigorjeva, and D. Millers, IEEE Trans. Nucl. Sci. 59, 2375 (2012).

    Article  Google Scholar 

  14. Y. Xu, W. Jie, P. Sellin, T. Wang, W. Liu, G. Zha, P. Veeramani, and C. Mills, J. Phys. D Appl. Phys. 42, 035105 (2009).

    Article  Google Scholar 

  15. W. Shockley and W.T. Read, Phys. Rev. 87, 835 (1952).

    Article  Google Scholar 

  16. Y.K. Hsieh and H.C. Card, J. Appl. Phys. 65, 2409 (1989).

    Article  Google Scholar 

  17. Z. Cheng, A.E. Delahoy, Z. Su, and K.K. Chin, Thin Solid Films 558, 391 (2014).

    Article  Google Scholar 

  18. G. Lucovsky, Solid State Commun. 3, 299 (1965).

    Article  Google Scholar 

  19. V.P. Makhniy, P.P. Horley, O.V. Kinzerskaya, and E.V. Stets, Appl. Opt. 53, B8–11 (2014).

    Article  Google Scholar 

  20. R. Guo, W. Jie, N. Wang, G. Zha, Y. Xu, T. Wang, and X. Fu, J. Appl. Phys. 117, 094502 (2015).

    Article  Google Scholar 

  21. A. Carvalho, A.K. Tagantsev, S. Öberg, P.R. Briddon, and N. Setter, Phys. Rev. B 81, 075215 (2010).

    Article  Google Scholar 

  22. L. Xu, W. Jie, B. Zhou, X. Fu, G. Zha, T. Wang, Y. Xu, T. Feng, and X. Chen, J. Electron. Mater. 44, 518 (2015).

    Article  Google Scholar 

  23. K. Suzuki, T. Sawada, and K. Imai, IEEE Trans. Nucl. Sci. 58, 1958 (2011).

    Article  Google Scholar 

  24. W.E. Spear, J. Non Cryst. Solids 1, 197 (1969).

    Article  Google Scholar 

  25. S. Ramo, Proc. I.R.E. 27, 584 (1939).

    Article  Google Scholar 

  26. W. Shockley, J. Appl. Phys. 9, 635 (1938).

    Article  Google Scholar 

  27. Z. He, Nucl. Instrum. Methods Phys. Res. Sect. A 463, 250 (2001).

    Article  Google Scholar 

  28. D.S. Bale, S.A. Soldner, and C. Szeles, Appl. Phys. Lett. 92, 082101 (2008).

    Article  Google Scholar 

  29. R. Grill, E. Belas, J. Franc, M. Bugár, S. Uxa, P. Moravec, and P. Hoschl, IEEE Trans. Nucl. Sci. 58, 3172 (2011).

    Article  Google Scholar 

  30. S. Shwartz, R. Weil, M. Segev, E. Lakin, E. Zolotoyabko, V.M. Menon, S.R. Forrest, and U. El-Hanany, Opt. Express 14, 9385 (2006).

    Article  Google Scholar 

  31. S. Shwartz, K.V. Adarsh, M. Segev, E. Lakin, E. Zolotoyabko, and U. El-Hanany, Phys. Rev. B 83, 1 (2011).

    Article  Google Scholar 

  32. M. Zanichelli, A. Santi, M. Pavesi, and A. Zappettini, J.␣Phys. D Appl. Phys. 46, 365103 (2013).

    Article  Google Scholar 

  33. Š. Uxa, E. Belas, R. Grill, P. Praus, and R.B. James, IEEE Trans. Nucl. Sci. 59, 2402 (2012).

    Article  Google Scholar 

  34. C. Szeles, IEEE Trans. Nucl. Sci. 51, 1242 (2004).

    Article  Google Scholar 

  35. G. Ottaviani, C. Canali, C. Jacoboni, A.A. Quaranta, and K. Zanio, J. Appl. Phys. 44, 360 (1973).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to give special thanks to Prof. Samuel Mao at University of California, Berkeley for the great help during the paper writing. This work was supported by the National Instrumentation Program (2011YQ040082), the National Natural Science Foundation of China (Grant Nos. 61274081, 51372205, and 51202197), the National 973 Project of China (2011CB610400), the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201410), and the 111 Project of China (B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanqi Jie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Jie, W., Xu, Y. et al. Space-Charge Manipulation Under Sub-bandgap Illumination in Detector-Grade CdZnTe. J. Electron. Mater. 44, 3229–3235 (2015). https://doi.org/10.1007/s11664-015-3835-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3835-0

Keywords

Navigation