Skip to main content
Log in

Effect of Carbon Doping and Crystalline Quality on the Vertical Breakdown Characteristics of GaN Layers Grown on 200-mm Silicon Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have carried out a systematic study on the vertical breakdown behavior of GaN-based epitaxial layers on 200-mm-diameter Si(111) substrates with different carbon concentrations. The GaN layers were grown by metalorganic chemical vapor deposition by tuning growth parameters such as temperature and pressure. This study shows that, when the carbon concentration of the wafers is below 1 × 1018 cm−3, the vertical leakage currents are high with breakdown voltages below 260 V. The wafers that reveal lower vertical leakage currents are those with moderate carbon doping concentrations (between ∼1 × 1018 cm−3 and 2.5 × 1018 cm−3), whereas wafers with higher carbon concentrations (≥4 × 1018 cm−3) give rise to poor breakdown behavior caused by lower crystal quality and rougher surface morphology. The uniformity of vertical breakdown behavior across a 200-mm wafer shows that wafers with low crystal quality also exhibit poor uniformity. Moreover, when the carbon doping level is relatively high (between ∼2 × 1018 cm−3 and 2.5 × 1018 cm−3), good uniformity with variation of ∼5% can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yoshida, J. Li, T. Wada, and H. Takehara, Proceedings of the 15th ISPSD, p. 58 (2003).

  2. Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S.P. DenBaars, and U.K. Mishra, IEEE Electron Devices Lett. 27, 713 (2006).

    Article  Google Scholar 

  3. U.K. Mishra, 2010 IEEE International Electron Devices Meeting (IEDM) (2010), pp. 13.2.1–13.2.4.

  4. Tanya Paskova and Keith R. Evans, IEEE J. Sel. Top. Quantum Electron. 15, 1041 (2009).

    Article  Google Scholar 

  5. N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida, Proc. IEEE 98, 1151 (2010).

    Article  Google Scholar 

  6. T. Egawa, 2012 IEEE International Electron Devices Meeting (IEDM) (2012), pp. 27.1.1–27.1.4.

  7. S. Tripathy, V.K.X. Lin, S.B. Dolmanan, J.P.Y. Tan, R.S. Kajen, L.K. Bera, S.L. Teo, M. Krishna Kumar, S. Arulkumaran, G.I. Ng, S. Vicknesh, S. Todd, W.Z. Wang, G.Q. Lo, H. Li, D. Lee, and S. Han, Appl. Phys. Lett. 101, 082110 (2012).

    Article  Google Scholar 

  8. S. Lenci, B. De Jaeger, L. Carbonell, J. Hu, G. Mannaert, D. Wellekens, S. You, B. Bakeroot, and S. Decoutere, IEEE Electron Devices Lett. 34, 1035 (2013).

    Article  Google Scholar 

  9. D. Chisty, T. Egawa, Y. Yano, H. Tokunaga, H. Shimamura, Y. Yamaoka, A. Ubukata, T. Tabuchi, and K. Matsumoto, Appl. Phys. Express 6, 026501 (2013).

    Article  Google Scholar 

  10. J.J. Freedsman, T. Egawa, Y. Yamaoka, Y. Yano, A. Ubukata, T. Tabuchi, and K. Matsumoto, Appl. Phys. Express 7, 041003 (2014).

    Article  Google Scholar 

  11. S. Heikman, S. Keller, S.P. DenBaars, and U.K. Mishra, Appl. Phys. Lett. 81, 439 (2002).

    Article  Google Scholar 

  12. G. Parish, S. Keller, S.P. Denbaars, and U.K. Mishra, J. Electron. Mater. 29, 15 (2000).

    Article  Google Scholar 

  13. S. Kato, Y. Satoh, H. Sasaki, I. Masayuki, and S. Yoshida, J. Cryst. Growth 298, 831 (2007).

    Article  Google Scholar 

  14. F. Brunner, E. Bahat-Treidel, M. Cho, C. Netzel, O. Hilt, J. Würfl, and M. Weyers, Phys. Status Solidi C 8, 2427 (2011).

    Article  Google Scholar 

  15. J. Chen, U. Forsberg, and E. Janzén, Appl. Phys. Lett. 102, 193506 (2013).

    Article  Google Scholar 

  16. I.B. Rowena, S.L. Selvaraj, and T. Egawa, IEEE Electron Devices Lett. 32, 1534 (2011).

    Article  Google Scholar 

  17. C. Zhou, Q. Jiang, S. Huang, and K.J. Chen, IEEE Electron Devices Lett. 33, 1132 (2012).

    Article  Google Scholar 

  18. A. Malmros, H. Blanck, and N. Rorsman, Semicond. Sci. Technol. 26, 075006 (2011).

    Article  Google Scholar 

  19. D. Qiao, L. Jia, L.S. Yu, P.M. Asbeck, S.S. Lau, S.-H. Lim, Z. Liliental-Weber, T.E. Haynes, and J.B. Barner, J. Appl. Phys. 89, 5543 (2011).

    Article  Google Scholar 

  20. S.L. Selvaraj, A. Watanabe, and T. Egawa, Appl. Phys. Lett. 98, 252105 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Z. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W.Z., Selvaraj, S.L., Win, K.T. et al. Effect of Carbon Doping and Crystalline Quality on the Vertical Breakdown Characteristics of GaN Layers Grown on 200-mm Silicon Substrates. J. Electron. Mater. 44, 3272–3276 (2015). https://doi.org/10.1007/s11664-015-3832-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3832-3

Keywords

Navigation