Highly Transparent and Low-Resistance Indium-Free ZnO/Ag/ZnO Multilayer Electrodes for Organic Photovoltaic Devices


We investigated the effect of ZnO layer thickness on the optical and electrical properties of ZnO/Ag/ZnO multilayer films deposited on glass substrates. The transmission window became wider and shifted toward the lower energy side with increasing ZnO thickness. The ZnO/Ag/ZnO (40 nm/18.8 nm/40 nm) multilayer sample showed transmittance of ~96% at 550nm. As the ZnO thickness was increased from 8 nm to 80 nm, the carrier concentration gradually decreased from 1.74 × 1022 cm−3 to 4.33 × 1021 cm−3, while the charge mobility varied from 23.8 cm2/V-s to 24.8 cm2/V-s. With increasing ZnO thickness, the samples exhibited similar sheet resistances of 3.6 Ω/sq to 3.9 Ω/sq, but the resistivity increased by a factor of 4.58. The samples showed smooth surfaces with root-mean-square roughness in the range of 0.47 nm to 0.94 nm. Haacke’s figure of merit (FOM) was calculated for all the samples; the ZnO (40 nm)/Ag (18.8 nm)/ZnO (40 nm) multilayer produced the highest FOM of 148.9 × 10−3 Ω−1.

This is a preview of subscription content, access via your institution.


  1. 1.

    G. Gustafsson, Y. Cao, G.M. Treacy, F. Klavetter, N. Colaneri, and A.J. Heeger, Nature (London) 357, 477 (1992).

    Article  Google Scholar 

  2. 2.

    Q. Wan, E.N. Dattoli, and W. Lu, Appl. Phys. Lett. 90, 222107 (2007).

    Article  Google Scholar 

  3. 3.

    A. Dhar and T.L. Alford, ECS Solid State Lett. 3, N33 (2014).

    Article  Google Scholar 

  4. 4.

    H. Hosono, H. Ohta, M. Orita, K. Ueda, and M. Hirano, Vacuum 66, 419 (2002).

    Article  Google Scholar 

  5. 5.

    M.-S. Oh, S.-H. Kim, and T.-Y. Seong, Appl. Phys. Lett. 87, 122103 (2005).

    Article  Google Scholar 

  6. 6.

    S.X. Zhang, S. Dhar, W. Yu, H. Xu, S.B. Ogale, and T. Venkatesan, Appl. Phys. Lett. 91, 112113 (2007).

    Article  Google Scholar 

  7. 7.

    Ö.D. Coşkun and S. Demirela, Appl. Surf. Sci. 277, 35 (2013).

    Article  Google Scholar 

  8. 8.

    S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, and Y. Jin, Thin Solid Films 552, 150 (2014).

    Article  Google Scholar 

  9. 9.

    A. Dhar and T.L. Alford, J. Appl. Phys. 112, 103113 (2012).

    Article  Google Scholar 

  10. 10.

    H.-H. Kim, E.-M. Kim, K.-J. Lee, J.-Y. Park, Y.-R. Lee, D.-C. Shin, T.-J. Hwang, and G.-S. Heo, Jpn. J. Appl. Phys. 53, 032301 (2014).

    Article  Google Scholar 

  11. 11.

    M. Makha, L. Cattin, Y. Lare, L. Barkat, M. Morsli, M. Addou, A. Khelil, and J.C. Bernède, Appl. Phys. Lett. 101, 233307 (2012).

    Article  Google Scholar 

  12. 12.

    K. Jeon, H. Youn, S. Kim, S. Shin, and M. Yang, Nanoscale Res. Lett. 253, 1 (2012).

    Google Scholar 

  13. 13.

    K.-H. Choi, Y.-Y. Choi, J.-A. Jeong, H.-K. Kim, and S. Jeon, Electrochem. Solid-State Lett. 14, H152 (2011).

    Article  Google Scholar 

  14. 14.

    J.-A. Jeong and H.-K. Kim, Thin Solid Films 547, 63 (2013).

    Article  Google Scholar 

  15. 15.

    J.-H. Song, J.-W. Jeon, Y.-H. Kim, J.-H. Oh, and T.-Y. Seong, Superlattice Microstruct. 62, 119 (2013).

    Article  Google Scholar 

  16. 16.

    J.-W. Lim, S.-I. Oh, K. Eun, S.-H. Choa, H.-W. Koo, T.-W. Kim, and H.-K. Kim, Jpn. J. Appl. Phys. 51, 115801 (2012).

    Article  Google Scholar 

  17. 17.

    J. Kulczyk-Malecka, P.J. Kelly, G. West, G.C.B. Clarke, J.A. Ridealgh, K.P. Almtoft, A.L. Greer, and Z.H. Barber, Acta Mater. 66, 396 (2014).

    Article  Google Scholar 

  18. 18.

    I. Dima, B. Popescu, F. Iova, and G. Popescu, Thin Solid Films 200, 11 (1991).

    Article  Google Scholar 

  19. 19.

    H. Han, N.D. Theodore, and T.L. Alford, J. Appl. Phys. 103, 013708 (2008).

    Article  Google Scholar 

  20. 20.

    D.R. Sahu, S.-Y. Lin, and J.-L. Huang, Appl. Surf. Sci. 252, 7509 (2006).

    Article  Google Scholar 

  21. 21.

    S.H. Mohamed, J. Phys. Chem. Solids 69, 2378 (2008).

    Article  Google Scholar 

  22. 22.

    D.R. Sahu and J.-L. Huang, Mater. Sci. Eng. B 130, 295 (2006).

    Article  Google Scholar 

  23. 23.

    Y.-H. Kim, J.-W. Lee, and R.-I. Murakami, IEEE Trans. Nanotechnol. 12, 991 (2013).

    Article  Google Scholar 

  24. 24.

    A.E. Hajj, B. Lucas, M. Chakaroun, R. Antony, B. Ratier, and M. Aldissi, Thin Solid Films 520, 4666 (2012).

    Article  Google Scholar 

  25. 25.

    K.L. Chopra, S. Major, and D.K. Pandya, Thin Solid Films 102, 1 (1983).

    Article  Google Scholar 

  26. 26.

    S.S. Lin, J.L. Huang, and D.F. Lii, Mater. Chem. Phys. 90, 22 (2005).

    Article  Google Scholar 

  27. 27.

    D. Song, A.G. Aberle, and J. Xia, Appl. Surf. Sci. 195, 291 (2002).

    Article  Google Scholar 

  28. 28.

    J.-H. Oh, H. Lee, D. Kim, and T.-Y. Seong, Surf. Coat. Technol. 206, 185 (2011).

    Article  Google Scholar 

  29. 29.

    A.D. Rakić, A.B. Djurišic, J.M. Elazar, and M.L. Majewski, Appl. Opt. 37, 5271 (1998).

    Article  Google Scholar 

  30. 30.

    S.-K. Kim, X. Zhang, D.J. Hill, K.-D. Song, J.-S. Park, H.-G. Park, and J.F. Cahoon, Nano Lett. 15, 753 (2015).

    Article  Google Scholar 

  31. 31.

    J.-H. Kim, H. Lee, J.-Y. Na, S.-K. Kim, Y.-Z. Yoo, and T.-Y. Seong, Curr. Appl. Phys. 15, 452 (2015).

    Article  Google Scholar 

  32. 32.

    M.A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M.M. Qazilbash, D.N. Basov, S. Ramanathan, and F. Capasso, Appl. Phys. Lett. 101, 221101 (2012).

    Article  Google Scholar 

  33. 33.

    H. Han, J.W. Mayer, and T.L. Alford, J. Appl. Phys. 100, 083715 (2006).

    Article  Google Scholar 

  34. 34.

    G. Haacke, J. Appl. Phys. 47, 4086 (1976).

    Article  Google Scholar 

  35. 35.

    W.G. Driscoll and W. Vaughan, Handbook of optics (New York: McGraw-Hill, 1978).

    Google Scholar 

  36. 36.

    L. Cattin, M. Morsli, F. Dahou, S.Y. Abe, A. Khelil, and J.C. Bernede, Thin Solid Films 518, 4560 (2010).

    Article  Google Scholar 

  37. 37.

    X. Liu, X. Cai, J. Qiao, J. Mao, and N. Jiang, Thin Solid Films 441, 200 (2003).

    Article  Google Scholar 

  38. 38.

    S. Shirakata, T. Sakemi, K. Awai, and T. Yamamoto, Superlattices Microstruct. 39, 218 (2006).

    Article  Google Scholar 

  39. 39.

    H.Y. Liu, V. Avrutin, N. Izyumskaya, U. Ozgur, and H. Morkoc, Superlattices Microstruct. 48, 458 (2010).

    Article  Google Scholar 

Download references


This work was supported by the Brain Korea 21 program funded by the Ministry of Science, ICT, and Future Planning, Korea and Korea Evaluation Institute of Industrial Technology (Grant No. 10049601: Development of output coupling conductive substrate with light extraction efficiency up to 1.0 times). S.-K.K. was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (NRF-2013R1A1A1059423).

Author information



Corresponding authors

Correspondence to Young-Zo Yoo or Tae-Yeon Seong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Na, JY., Kim, SK. et al. Highly Transparent and Low-Resistance Indium-Free ZnO/Ag/ZnO Multilayer Electrodes for Organic Photovoltaic Devices. Journal of Elec Materi 44, 3967–3972 (2015). https://doi.org/10.1007/s11664-015-3811-8

Download citation


  • ZnO
  • Ag
  • multilayer
  • transparent conducting electrode