Skip to main content
Log in

Influences of Strain Rate and Load Direction on the Thermo-mechanical Behavior of a Nano-Alumina-Containing Copper Alloy Bar

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of strain rate and load direction on the thermo-mechanical behavior of Cu-2.7vol.%Al2O3 alloy bar with high strength and electrical conductivity were investigated. The results show that the thermo-mechanical behavior of the alloy changes greatly with changing load direction or strain rate. For the same compression strain rate, the peak yield stress in the longitudinal compression is much higher than that of transverse compression. The homogeneous distribution of dynamic recrystallization grains or subgrains after longitudinal compression is much higher than that of transverse compression. For the longitudinal or transverse compression, the size of dynamical recrystallization grains decreases with increasing strain rate, the initial elongated bands can only be observed in the transverse compressions due to the effect of load direction. The flow stress oscillation phenomenon appears in both transverse and longitudinal compressions with a strain rate of 20 s−1. Accordingly, the relationship between flow stress and microstructure, and a model of dynamic recrystallization in the transverse and longitudinal compressions, were established and analyzed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.X. Guo, M.P. Wang, L.F. Cao, and R.S. Lei, Mater. Charact. 58, 928 (2007).

    Article  Google Scholar 

  2. M.X. Guo, M.P. Wang, K. Shen, L.F. Cao, and W. Tan, J. Alloys. Compd. 469, 488 (2009).

    Article  Google Scholar 

  3. J.W. Martin, Micromechanisms in Particle-Hardened Alloys (Cambridge: Cambridge University Press, 1980.

    Google Scholar 

  4. C. Biselli, D.G. Morris, and N. Randall, Scr. Metall. Mater. 30, 1327 (1994).

    Article  Google Scholar 

  5. M.X. Guo, K. Shen, and M.P. Wang, Acta Mater. 57, 4568 (2009).

    Article  Google Scholar 

  6. M.X. Guo, M.P. Wang, K. Shen, L.F. Cao, Z. Li, and Z. Zhang, J. Alloys. Compd. 460, 585 (2008).

    Article  Google Scholar 

  7. J. Lee, N.J. Kim, J.Y. Jung, E.S. Lee, and S. Ahn, Scr. Mater. 39, 1063 (1998).

    Article  Google Scholar 

  8. M. Brocq, B. Radiguet, J.M. Le Breton, F. Cuvilly, P. Pareige, and F. Legendre, Acta Mater. 58, 1806 (2010).

    Article  Google Scholar 

  9. M. Brocq, B. Radiguet, S. Poissonnet, F. Cuvilly, P. Pareige, and F. Legendre, J. Nucl. Mater. 409, 80 (2011).

    Article  Google Scholar 

  10. H. Simchi and A. Simchi, Mater. Sci. Eng. A 507, 200 (2009).

    Article  Google Scholar 

  11. M.S. Motta, P.K. Jena, E.A. Brocchi, and I.G. Solórzano, Mater. Sci. Eng. C 15, 175 (2001).

    Article  Google Scholar 

  12. J.R. Sims, M.A. Hill, and R.P. Walsh, IEEE Trans. Magn. 30, 2211 (1994).

    Article  Google Scholar 

  13. J.T. Wood, J.D. Embury, and M.F. Ashby, Acta Mater. 45, 1099 (1997).

    Article  Google Scholar 

  14. M.X. Guo, K. Shen, and M.P. Wang, Mater. Sci. Eng. A 527, 2478 (2010).

    Article  Google Scholar 

  15. R.F. Need, D.J. Alexander, R.D. Field, V. Livescu, P. Papin, C.A. Swenson, and D.B. Mutnick, Mater. Sci. Eng. A 565, 450 (2013).

    Article  Google Scholar 

  16. K. Shen, M.X. Guo, and M.P. Wang, Mater. Chem. Phys. 120, 709 (2010).

    Article  Google Scholar 

  17. E. Arzt and E. Göhring, Scr. Metall. Mater. 28, 843 (1993).

    Article  Google Scholar 

  18. J. Rösler and E. Arzt, Acta Metall. 38, 671 (1990).

    Article  Google Scholar 

  19. M.X. Guo and M.P. Wang, Mater. Sci. Eng. A 546, 15 (2012).

    Article  Google Scholar 

  20. P. Li, Z.F. Zhang, S.X. Li, and Z.G. Wang, Acta Mater. 56, 2212 (2008).

    Article  Google Scholar 

  21. T. Sakai and J.J. Jonas, Acta Metall. 32, 189 (1984).

    Article  Google Scholar 

  22. C.S. Smith, Trans. AIMR 175, 15 (1948).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxing Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Wang, F., Huang, G. et al. Influences of Strain Rate and Load Direction on the Thermo-mechanical Behavior of a Nano-Alumina-Containing Copper Alloy Bar. J. Electron. Mater. 44, 3523–3533 (2015). https://doi.org/10.1007/s11664-015-3810-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3810-9

Keywords

Navigation