Skip to main content
Log in

Modification of Chemically Exfoliated Graphene to Produce Efficient Piezoresistive Polystyrene–Graphene Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report the chemical exfoliation of grapheneoxide from graphite and its subsequent reduction to graphene nanosheets (GN) to obtain highly conducting composites of graphene sheets in a polymer matrix. The effect of using graphite nanoparticles or flakes as precursors, and different drying methods, was investigated to obtain multilayer graphene sheets of atomically controlled thickness, which was essential to optimizing their dispersion in a polystyrene (PS) polymer matrix. In situ emulsion polymerization of the styrene monomer in the presence of GN was performed to obtain thin composite films with highly uniform dispersion and fewer graphene layers when GN were obtained from graphite flakes then freeze drying. The highest electrical conductivity of PS–GN composites was ~0.01 S/m for a graphene filling fraction of 2%. The piezoresistance of the PS–GN composites was evaluated and used in pressure sensor arrays with pressure field imaging capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I. Grigorieva, S.V. Dubonos, and A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  3. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, A.K. Morozov, and S.V. Geim, Proc. Natl. Acad. Sci. 102, 10451 (2005).

    Article  Google Scholar 

  4. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, Nature 446, 60 (2007).

    Article  Google Scholar 

  5. W.S. Hummers and R.E. Ofeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  Google Scholar 

  6. D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).

    Article  Google Scholar 

  7. H. He, J. Klinowski, M. Forster, and A. Lerf, Chem. Phys. Lett. 287, 53 (1998).

    Article  Google Scholar 

  8. A. Lerf, H. He, M. Forster, and I.J. Klinowski, J. Phys. Chem. B 102, 4477 (1998).

    Article  Google Scholar 

  9. W.W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S.J. An, M. Stoller, J. An, D. Chen, and R.S. Ruoff, Science 26, 1815 (2008).

    Article  Google Scholar 

  10. W. Gao, L.B. Alemany, L. Ci, and P.M. Ajayan, Nature Chem. 1, 403 (2009).

    Article  Google Scholar 

  11. Z. Xu and C. Gao, Macromolecules 43, 6716 (2010).

    Article  Google Scholar 

  12. V.C. Tung, M.J. Allen, Y. Yang, and R.B. Kaner, Nat. Nanotechnol. 4, 25 (2009).

    Article  Google Scholar 

  13. A.D. Smith, F. Niklaus, A. Paussa, S. Vaziri, A.V. Fisher, M. Sterner, F. Forsberg, A. Delin, D. Esseni, P. Palestri, M. Ostling, and M.C. Lemme, Nano Lett. 13, 3237 (2013).

    Article  Google Scholar 

  14. S. Littlejohn, A. Nogaret, G.M. Prentice, and G.D. Pantoş, Adv. Func. Mat. 23, 5398 (2013).

    Article  Google Scholar 

  15. L.G.P. Martins, Y. Song, T.Y. Zeng, M.S. Dresselhaus, J. Kong, and P.T. Araujo, Proc. Nat. Acad. Sci. 110, 17762 (2013).

    Article  Google Scholar 

  16. T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbatchev, S.V. Morozov, Y.J. Kim, A. Gholinia, S.J. Haigh, O. Makarovsky, L. Eaves, L.A. Ponomarenko, A.K. Geim, K.S. Novoselov, and A. Mishchenko, Nat. Nanotech. 8, 100 (2013).

    Article  Google Scholar 

  17. C. Gomez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, Nano Lett. 10, 1144 (2010).

    Article  Google Scholar 

  18. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).

    Article  Google Scholar 

  19. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prudhomme, and L.C. Brinson, Nat. Nanotechnol. 3, 327 (2008).

    Article  Google Scholar 

  20. S. Ansari, A. Kelarakis, L. Estevez, and E.P. Giannelis, Small 6, 205 (2010).

    Article  Google Scholar 

  21. H. Hu, X. Wang, J. Wang, L. Wan, F. Liu, H. Zheng, R. Chen, and C. Xu, Chem. Phys. Lett. 484, 247 (2010).

    Article  Google Scholar 

  22. S. Stankovich, R.D.T. Piner, S.B. Nguyen, and R.S. Ruoff, Carbon 44, 3342 (2006).

    Article  Google Scholar 

  23. A.K. Appel, R. Thomann, and R. Mulhaupt, Macromol. Rapid Comm. 34, 1249 (2013).

    Article  Google Scholar 

  24. S. Littlejohn, A. Nogaret, and S. Crampin, Adv. Mater. 23, 2815 (2011).

    Article  Google Scholar 

  25. W. Li, X.-Z. Tang, H.-B. Zhang, Z.-G. Jiang, Z.-Z. Yu, X.-S. Du, and Y.-W. Mai, Carbon 49, 4724 (2011).

    Article  Google Scholar 

  26. G. Eda and M. Chhowalla, Nano Lett. 9, 814 (2009).

    Article  Google Scholar 

  27. A.V. Raghu, Y.R. Lee, H.M. Jeong, and C.M. Shin, Macromol. Chem. Phys. 209, 2487 (2008).

    Article  Google Scholar 

  28. A.P. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, and R.C. Haddon, J. Phys. Chem. C 111, 7565 (2007).

    Article  Google Scholar 

  29. J. Du and H.-M. Cheng, Macromol. Chem. Phys. 213, 1060 (2012).

    Article  Google Scholar 

  30. S. Park and R.S. Ruof, Nat. Nanotechnol. 4, 217 (2009).

    Article  Google Scholar 

  31. L. Zhang, J. Liang, Y. Huang, Y. Ma, Y. Wang, and Y. Chen, Carbon 47, 3365 (2009).

    Article  Google Scholar 

  32. Y. Geng, S. Wang, and J.K. Kim, J. Colloid Interface Sci. 336, 592 (2009).

    Article  Google Scholar 

  33. E. Brauer, Handbook of Preparative Inorganic Chemistry, 2nd ed. (New York: Academic Press, 1963), p. 1741.

    Google Scholar 

  34. A. Kaniyoor, T.T. Baby, and S. Ramaprabhu, J. Mater. Chem. 20, 8467 (2010).

    Article  Google Scholar 

  35. J. Luo, H. Jang, and J. Huang, ACS Nano 7, 1464 (2013).

    Article  Google Scholar 

  36. B.E. Warren and P. Bodestein, Acta Cryst 18, 282 (1965).

    Article  Google Scholar 

  37. B. Saner, F. Okyay, and Y. Yürüm, Fuel 89, 1903 (2010).

    Article  Google Scholar 

  38. B. Saner, F. Dinç, and Y. Yürüm, Fuel 90, 2609 (2011).

    Article  Google Scholar 

  39. G. Srinivas, Y. Zhu, R. Piner, N. Skipper, M. Ellerby, and R. Ruoff, Carbon 48, 630 (2010).

    Article  Google Scholar 

  40. S. Chandra, S. Sahu, and P. Pramanik, Mater. Sci. Eng. B 167, 133 (2010).

    Article  Google Scholar 

  41. W. Chen, L. Yan, and P.R. Bangal, Carbon 48, 1146 (2010).

    Article  Google Scholar 

  42. L.M. Malard, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rep. 473, 51 (2009).

    Article  Google Scholar 

  43. J.C. Meyer, A.C. Ferrari, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    Article  Google Scholar 

  44. A.C. Ferrari, Solid State Commun. 143, 47 (2007).

    Article  Google Scholar 

  45. V. Sridhar, J.H. Jeon, and I.K. Oh, Carbon 48, 2953 (2010).

    Article  Google Scholar 

  46. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and S.R. Rodney, Carbon 45, 1558 (2007).

    Article  Google Scholar 

  47. Y. Ogawa, A. Nakamura, A. Tanaka, and J. Temmyo, Jpn. J. Appl. Phys. 48, 04C140 (2009).

    Google Scholar 

  48. F. Tuinstra and J.K. Koenig, J. Chem. Phys. 53, 1126 (1970).

    Article  Google Scholar 

  49. X.Y. Qi, D. Yan, Y.K. Jiang, Z. Cao, Z.Z. Yu, F. Yavari, and N. Koratkar, ACS Appl Mater Interfaces 3, 3130 (2011).

    Article  Google Scholar 

  50. A. Dehé, K. Fricke, K. Mutamba, and H.L. Hartnagel, J. Micromech. Microeng. 5, 139 (1995).

    Article  Google Scholar 

  51. J. Shojaii, K.-Y. Ng, and M.A. Schmidt, J. Micromech. Syst. 1, 89 (1992).

    Article  Google Scholar 

  52. H. Lv, C. Jiang, Z. Xiang, B. Ma, J. Deng, and W. Yuan, Flow Meas. Instrum. 30, 66 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Nasirpouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasirpouri, F., Pourmahmoudi, H., Abbasi, F. et al. Modification of Chemically Exfoliated Graphene to Produce Efficient Piezoresistive Polystyrene–Graphene Composites. J. Electron. Mater. 44, 3512–3522 (2015). https://doi.org/10.1007/s11664-015-3799-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3799-0

Keywords

Navigation