Skip to main content
Log in

Effect of Doping with Substituent Bi Atoms on the Electrical Transport Properties of a Bi0.4Sb1.6Te3 Film Fabricated by Molecular Beam Epitaxy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A highly crystalline Bi0.4Sb1.6Te3 film was fabricated on a Si substrate by molecular beam epitaxy (MBE) at a substrate temperature of 280°C. On the basis of study of x-ray diffraction patterns and high-resolution transmission electron microscopy lattice fringes it was inferred that Bi atoms were successfully incorporated into Sb lattice sites, forming substituent Bi impurities. Reduction of the carrier concentration was ascribed to the increased resistance to formation of antisite defects when Sb was substituted by Bi. The reduced mobility was a result of enhanced grain boundary scattering and attraction by substituent Bi atoms. Analysis of temperature-dependent electrical transport properties revealed that introduction of Bi atoms resulted in deeper energy level impurities in the Bi0.4Sb1.6Te3 film and higher activation energy (43.2 meV) than the normal value at room temperature, leading to semiconductor characteristics of the film in the temperature range −50°C to 150°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  2. O. Sullivan, M.P. Gupta, S. Mukhopadhyay, and S. Kumar, J. Electron. Packag. 137, 011005 (2015).

    Article  Google Scholar 

  3. P. Sundarraj, D. Maity, S.S. Roy, and R.A. Taylor, RSC Adv. 4, 46860 (2014).

    Article  Google Scholar 

  4. C. Xiao, Z. Li, K. Li, P. Huang, and Y. Xie, Acc. Chem. Res. 47, 1287 (2014).

    Article  Google Scholar 

  5. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  6. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  Google Scholar 

  7. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  Google Scholar 

  8. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    Article  Google Scholar 

  9. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  10. Z. Hu, U.S. Patent 7,696,668, 13 April 2010.

  11. D. Teweldebrhan, V. Goyal, M. Rahman, and A.A. Balandin, Appl. Phys. Lett. 96, 053107 (2010).

    Article  Google Scholar 

  12. Z. Wang, X. Zhang, Z. Zeng, Z. Zhang, and Z. Hu, ECS Solid-State Lett. 3, P99 (2014).

    Article  Google Scholar 

  13. X. Zhang, Z. Zeng, C. Shen, Z. Zhang, Z. Wang, C. Lin, and Z. Hu, J. Appl. Phys. 115, 024307 (2014).

    Article  Google Scholar 

  14. H.-H. Hsu, C.-H. Cheng, Y.-L. Lin, S.-H. Chiou, C.-H. Huang, and C.-P. Cheng, Appl. Phys. Lett. 103, 053902 (2013).

    Article  Google Scholar 

  15. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, and Z. Ren, Nano Lett. 8, 2580 (2008).

    Article  Google Scholar 

  16. D. Teweldebrhan, V. Goyal, and A.A. Balandin, Nano Lett. 10, 1209 (2010).

    Article  Google Scholar 

  17. N. Peranio, M. Winkler, Z. Aabdin, J. König, H. Böttner, and O. Eibl, Phys. Status Solidi A 209, 289 (2012).

    Article  Google Scholar 

  18. G. Wang, X. Zhu, J. Wen, X. Chen, K. He, L. Wang, X. Ma, Y. Liu, X. Dai, Z. Fang, J. Jia, and Q. Xue, Nano Res. 3, 874 (2010).

    Article  Google Scholar 

  19. Y.-Y. Li, G. Wang, X.-G. Zhu, M.-H. Liu, C. Ye, X. Chen, Y.-Y. Wang, K. He, L.-L. Wang, X.-C. Ma, H.-J. Zhang, X. Dai, Z. Fang, X.-C. Xie, Y. Liu, X.-L. Qi, J.-F. Jia, S.-C. Zhang, and Q.-K. Xue, Adv. Mater. 22, 4002 (2010).

    Article  Google Scholar 

  20. S. Zastrow, J. Gooth, T. Boehnert, S. Heiderich, W. Toellner, S. Heimann, S. Schulz, and K. Nielsch, Semicond. Sci. Technol. 28, 035010 (2013).

    Article  Google Scholar 

  21. V.D. Das, N. Soundararajan, and M. Pattabi, J. Mater. Sci. 22, 3522 (1987).

    Article  Google Scholar 

  22. Y. Takagaki, A. Giussani, K. Perumal, R. Calarco, and K.-J. Friedland, Phys. Rev. B 86, 125137 (2012).

    Article  Google Scholar 

  23. T. Zhang, P. Cheng, X. Chen, J.-F. Jia, X. Ma, K. He, L. Wang, H. Zhang, X. Dai, Z. Fang, X. Xie, and Q.-K. Xue, Phys. Rev. Lett. 103, 266803 (2009).

    Article  Google Scholar 

  24. D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J.H. Dil, J. Osterwalder, L. Patthey, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, and M.Z. Hasan, Phys. Rev. Lett. 103, 146401 (2009).

    Article  Google Scholar 

  25. Y. Zhang, C.-Z. Chang, K. He, L.-L. Wang, X. Chen, J.-F. Jia, X.-C. Ma, and Q.-K. Xue, Appl. Phys. Lett. 97, 194102 (2010).

    Article  Google Scholar 

  26. L. Hu, T. Zhu, X. Liu, and X. Zhao, Adv. Funct. Mater. 24, 5211 (2014).

    Article  Google Scholar 

  27. H. Li, G. Suna, L. Cao, L. Jiang, and Q. Xin, Electrochim. Acta 52, 6622 (2007).

    Article  Google Scholar 

  28. Z. Starý, J. Horák, M. Stordeur, and M. Stölzer, J. Phys. Chem. Solids 49, 29 (1988).

    Article  Google Scholar 

  29. Y. Xiao, J.-Y. Yang, Q.-H. Jiang, L.-W. Fu, Y.-B. Luo, M. Liu, D. Zhang, M.-Y. Zhang, W.-X. Li, J.-Y. Peng, and F.-Q. Chen, J. Mater. Chem. A 2, 20288 (2014).

    Article  Google Scholar 

  30. V.D. Das and N. Soundararajan, J. Appl. Phys. 65, 2332 (1989).

    Article  Google Scholar 

  31. H.B. Michaelson, J. Appl. Phys. 48, 4729 (1977).

    Article  Google Scholar 

  32. Z. Zhang, Y. Wang, Y. Deng, and Y. Xu, Solid State Commun. 151, 1520 (2011).

    Article  Google Scholar 

  33. Z. Aabdin, N. Peranio, M. Winkler, D. Bessas, J. König, R.P. Hermann, H. Böttner, and O. Eibl, J. Electron. Mater. 41, 1493 (2012).

    Article  Google Scholar 

  34. S. Baba, L. Huang, H. Sato, R. Funahashi, and J. Akedo, J. Phys. Conf. Ser. 379, 012011 (2012).

    Article  Google Scholar 

  35. M. Takashiri, S. Tanaka, M. Takiishi, M. Kihara, K. Miyazaki, and H. Tsukamoto, J. Alloys Compd. 462, 351 (2008).

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by Shanghai Science and Technology Funds (10520710400, 10PJ140 3800, 11DZ1111200), the National Natural Science Foundation of China (21103104, 61204129), the Innovation Foundation of Shanghai University, and the Special Fund for Selection and Cultivation of Excellent Youth in the University of Shanghai city. We also acknowledge the Instrument Analysis and Research Center of Shanghai University for providing measurement service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyu Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, X., Wu, Y. et al. Effect of Doping with Substituent Bi Atoms on the Electrical Transport Properties of a Bi0.4Sb1.6Te3 Film Fabricated by Molecular Beam Epitaxy. J. Electron. Mater. 44, 3334–3340 (2015). https://doi.org/10.1007/s11664-015-3782-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3782-9

Keywords

Navigation