Skip to main content
Log in

Measurement of Dielectric Properties of Ultrafine BaTiO3 Using an Organic–Inorganic Composite Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ultrafine BaTiO3, unlike traditional ferroelectric materials, demonstrates some interesting dielectric properties, such as a gradual transition from paraelectric to ferroelectric phase, which is similar to dielectric relaxation ferroelectrics. Although several methods have been recently proposed to measure the dielectric properties of ultrafine BaTiO3, the problem still remains unsolved. This paper proposes a new method to estimate the dielectric properties of ultrafine BaTiO3 by measuring and analyzing the dielectric properties of BaTiO3–epoxy composites. The Novocontrol dielectric measuring system was employed to measure the dielectric response of the composites. The dielectric behavior and relaxation characteristics of the BaTiO3 filler were estimated by modeling and calculating the dielectric constant based on different mixture theories. Results reveal that the effect of surface states yields dielectric relaxation in ultrafine BaTiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.B. Smith, K. Page, T. Sieqrist, et al., J. Am. Chem. Soc. 130, 6955 (2008).

    Article  Google Scholar 

  2. J. Junquera and P. Ghosez, Nature 422, 506 (2003).

    Article  Google Scholar 

  3. D. Tenne, P. Turner, J. Schmidt, et al., Phys. Rev. Lett. 103, 177601 (2009).

    Article  Google Scholar 

  4. U.A. Joshi, S. Yoon, S. Baik, et al., J. Phys. Chem. B. 110, 12249 (2006).

    Article  Google Scholar 

  5. D. Kim, J. Jo, Y. Kim, et al., Phys. Rev. Lett. 95, 237602 (2005).

    Article  Google Scholar 

  6. J.Q. Qi, T. Peng, Y.M. Hu, et al., Nanoscale Res. Lett. 6, 466 (2011).

    Article  Google Scholar 

  7. C.J. Xiao, C.Q. Jin, X.H. Wang, Guang Pu Xue Yu Guang Pu Fen Xi. 28, 2876 (2008).

    Google Scholar 

  8. D. Fong, G. Stephenson, S. Streiffer, et al., Science 304, 1650 (2004).

    Article  Google Scholar 

  9. K. Choi, M. Biegalski, Y. Li, et al., Science 306, 1005 (2004).

    Article  Google Scholar 

  10. I.W. Chen and X.H. Wang, Nature 404, 168 (2000).

    Article  Google Scholar 

  11. A. Uehashi, K. Sasaki, T. Tokunaga, et al., Microscopy 63, i19 (2014).

    Article  Google Scholar 

  12. S.M. Moon, C. Lee, J.W. Han, et al., J. Nanosci. Nanotechnol. 9, 1518 (2009).

    Article  Google Scholar 

  13. W.L. Luan, L. Gao, H. Kawaoka, et al., Ceram. Int. 30, 405 (2004).

    Article  Google Scholar 

  14. D.K. Lee, D.W. Kim, I.S. Cho, et al., J. Nanosci. Nanotechnol. 10, 1361 (2010).

    Article  Google Scholar 

  15. C. Zou (Thesis, Xi’an Jiao Tong University, Xi’an, 2004).

  16. Y. Sakabe, Y. Yamashita, H. Yamamoto, J. Eur. Ceram. Soc. 25, 2739 (2005).

    Article  Google Scholar 

  17. P. Sedykh, D. Michel, E. Charnaya, et al., Ferroelectrics 400, 135 (2010).

    Article  Google Scholar 

  18. J. Bao, S.T. Li, Q. Chen, et al., J. Shenyang Univ. Technol. 3, 310 (2009).

    Google Scholar 

  19. H. Yurtseven and A. Kiraci, J. Mol. Model. 19, 3925 (2013).

    Article  Google Scholar 

  20. P. Patil, J.M. Lee, Y.K. Seo, et al., J. Nanosci. Nanotechnol. 9, 318 (2009).

    Article  Google Scholar 

  21. M.A. Alam, M.H. Azarian, and M.G. Pecht, J. Electron. Mater. 41, 2286 (2012).

    Article  Google Scholar 

  22. A.K. Jha and K. Prasad, Colloids Surf. B. Biointerfaces 75, 330 (2010).

    Article  Google Scholar 

  23. S. Ray, Y.V. Kolenko, K.A. Kovnir, et al., Nanotechnology 23, 025702 (2012).

    Article  Google Scholar 

  24. Z.M. Dang, Y.F. Yu, H.P. Xu, et al., Compos. Sci. Technol. 68, 171 (2008).

    Article  Google Scholar 

  25. J.F. Scottand and M. Dawber, Appl. Phys. Lett. 76, 3801 (2000).

    Article  Google Scholar 

  26. B.L. Cheng, T.W. Button, M. Gabbay, et al., J. Am. Ceram. Soc. 88, 907 (2005).

    Article  Google Scholar 

  27. L. Chen, X.M. Xiong, H. Meng, et al., Appl. Phys. Lett. 89, 071916 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, J., Wang, W., Li, S. et al. Measurement of Dielectric Properties of Ultrafine BaTiO3 Using an Organic–Inorganic Composite Method. J. Electron. Mater. 44, 2300–2307 (2015). https://doi.org/10.1007/s11664-015-3729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3729-1

Keywords

Navigation