Nanostructuring of Undoped ZnSb by Cryo-Milling

Abstract

We report the preparation of nanosized ZnSb powder by cryo-milling. The effect of cryo-milling then hot-pressing of undoped ZnSb was investigated and compared with that of room temperature ball-milling and hot-pressing under different temperature conditions. ZnSb is a semiconductor with favorable thermoelectric properties when doped. We used undoped ZnSb to study the effect of nanostructuring on lattice thermal conductivity, and with little contribution at room temperature from electronic thermal conductivity. Grain growth was observed to occur during hot-pressing, as observed by transmission electron microscopy and x-ray diffraction. The thermal conductivity was lower for cryo-milled samples than for room-temperature ball-milled samples. The thermal conductivity also depended on hot-pressing conditions. The thermal conductivity could be varied by a factor of two by adjusting the process conditions and could be less than a third that of single-crystal ZnSb.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, and T. Caillat, Int. Mater. Rev. 48, 45 (2003).

    Article  Google Scholar 

  2. 2.

    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. 3.

    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  4. 4.

    P. Pichanusakorn and P. Bandaru, Mat. Sci. Eng. R 67, 19 (2010).

    Article  Google Scholar 

  5. 5.

    M. Zebarjadi, Z.X. Bian, R. Singh, A. Shakouri, R. Wortman, V. Rawat, and T. Sands, J. Electron. Mater. 38, 960 (2009).

    Article  Google Scholar 

  6. 6.

    G.H. Zeng, J.M.O. Zide, W. Kim, J.E. Bowers, A.C. Gossard, Z.X. Bian, Y. Zhang, A. Shakouri, S.L. Singer, and A. Majumdar, J. Appl. Phys. 101, 034502 (2007).

    Article  Google Scholar 

  7. 7.

    C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010).

    Article  Google Scholar 

  8. 8.

    J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Edit. 48, 8616 (2009).

    Article  Google Scholar 

  9. 9.

    M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).

    Article  Google Scholar 

  10. 10.

    J.R. Szczech, J.M. Higgins, and S. Jin, J. Mater. Chem. 21, 4037 (2011).

    Article  Google Scholar 

  11. 11.

    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Article  Google Scholar 

  12. 12.

    Je-Hyeong Bahk, Zhixi Bian, and Ali Shakouri, Phys. Rev. B 89, 075204 (2014).

    Article  Google Scholar 

  13. 13.

    Mona Zebarjadi, Giri Joshi, Gaohua Zhu, Yu Bo, Austin Minnich, Yucheng Lan, Xiaowei Wang, Mildred Dresselhaus, Zhifeng Ren, and Gang Chen, Nano Lett. 11, 2225 (2011).

    Article  Google Scholar 

  14. 14.

    Hong Zhu, Wenhao Sun, Rickard Armiento, Predrag Lazic, and Gerbrand Ceder, Appl. Phys. Lett. 104, 082107 (2014).

    Article  Google Scholar 

  15. 15.

    M.I. Fedorov, L.V. Prokof’eva, D.A. Pshenay-Severin, A.A. Shabaldin, and P.P. Konstantinov, J. Electron. Mater. 43, 2314 (2014).

    Article  Google Scholar 

  16. 16.

    M.I. Fedorov, L.V. Prokofieva, Y.I. Ravich, P.P. Konstantinov, D.A. Pshenay-Severin, and A.A. Shabaldin, Semiconductors 48, 432 (2014).

    Article  Google Scholar 

  17. 17.

    P.H.M. Bottger, G.S. Pomrehn, G.J. Snyder, and T.G. Finstad, Phys. Status Solidi A 208, 2753 (2011).

    Article  Google Scholar 

  18. 18.

    K. Valset, P.H.M. Bottger, J. Tafto, and T.G. Finstad, J. Appl. Phys. 111, 023703 (2012).

    Article  Google Scholar 

  19. 19.

    P. Jund, R. Viennois, X. Tao, K. Niedziolka, and J.C. Tédenac, Phys. Rev. B 85, 225105 (2012).

    Article  Google Scholar 

  20. 20.

    D. Eklöf, A. Fischer, Y. Wu, E.W. Scheidt, W. Scherer, and U. Häussermann, J. Mater. Chem. A 1, 1407 (2013).

    Article  Google Scholar 

  21. 21.

    L. Bjerg, B.B. Iversen, and G.K.H. Madsen, Phys. Rev. B 89, 024304 (2014).

    Article  Google Scholar 

  22. 22.

    K. Niedziolka, R. Pothin, F. Rouessac, R.M. Ayral, and P. Jund, J.Phys. Condens. Mat. 26, 365401 (2014).

    Article  Google Scholar 

  23. 23.

    D.B. Xiong, N.L. Okamoto, and H. Inui, Scr. Mater. 69, 397 (2013).

    Article  Google Scholar 

  24. 24.

    Chinatsu Okamura, Takashi Ueda, and Kazuhiro Hasezaki, Mater. Trans. 51, 860 (2010).

    Article  Google Scholar 

  25. 25.

    D.M. Rowe, V.S. Shukla, and S. Savvides, Nature 290, 765 (1981).

    Article  Google Scholar 

  26. 26.

    G. Zhu, H. Lee, Y. Lan, X. Wang, G. Joshi, D. Wang, J. Yang, D. Vashaee, H. Guilbert, A. Pillitteri, M. Dresselhaus, G. Chen, and Z. Ren, Phys. Rev. Lett. 102, 196803 (2009).

    Article  Google Scholar 

  27. 27.

    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  28. 28.

    C.Y. Wu and W.D. Ken, Solid State Electron. 26, 675 (1983).

    Article  Google Scholar 

  29. 29.

    N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, and D. Narducci, Nanotechnology 24, 205402 (2013).

    Article  Google Scholar 

  30. 30.

    Gabi Schierning, Phys. Status Solidi A 211, 1235 (2014).

    Article  Google Scholar 

  31. 31.

    A.D. LaLonde, T. Ikeda, and G.J. Snyder, Rev. Sci. Instrum. 82, 025104 (2011).

    Article  Google Scholar 

  32. 32.

    J.I. Langford and A.J.C. Wilson, J. Appl. Crystallogr. 11, 102 (1978).

    Article  Google Scholar 

  33. 33.

    G. Nichols, S. Byard, M.J. Bloxham, J. Botterill, N.J. Dawson, A. Dennis, V. Diart, N.C. North, and J.D. Sherwood, J. Pharm. Sci. 91, 2103 (2002).

    Article  Google Scholar 

  34. 34.

    M.P.H. Böttger, K. Valset, S. Deledda, and T.G. Finstad, J. Electron. Mater. 39, 1583 (2010).

    Article  Google Scholar 

  35. 35.

    P.J. Shaver and J. Blair, Phys. Rev. 141, 649 (1966).

    Article  Google Scholar 

  36. 36.

    G.S. Nolas and J.H. Goldsmid, Thermal Conductivity: Theory, Properties, and Applications, ed. T.M. Tritt (New York: Kluwer Academic Publishers, 2004), p. 115.

    Google Scholar 

Download references

Acknowledgement

We thank Jaya Nolt of UCSB for performing XRD at different temperatures. X.S. is grateful for help with the rapid hot-press at California Institute of Technology (c/o Jeff Snyder) and use of high-temperature Hall setup. This work was supported by the Norwegian Research Council under contract NFR11-40-6321 (NanoThermo) and the University of Oslo. X.S. acknowledges financial support by a Kristine Bonnevie stipend from University of Oslo, a travel grant, and infrastructure grants from the Norwegian Nano-Network and from NorFab.

Author information

Affiliations

Authors

Corresponding author

Correspondence to X. Song.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, X., Valset, K., Graff, J. et al. Nanostructuring of Undoped ZnSb by Cryo-Milling. Journal of Elec Materi 44, 2578–2584 (2015). https://doi.org/10.1007/s11664-015-3708-6

Download citation

Keywords

  • Nanostructuring
  • ZnSb
  • thermal conductivity
  • thermoelectric materials