Journal of Electronic Materials

, Volume 44, Issue 8, pp 2578–2584 | Cite as

Nanostructuring of Undoped ZnSb by Cryo-Milling

  • X. SongEmail author
  • K. Valset
  • J.S. Graff
  • A. Thøgersen
  • A.E. Gunnæs
  • S. Luxsacumar
  • O.M. Løvvik
  • G.J. Snyder
  • T.G. Finstad


We report the preparation of nanosized ZnSb powder by cryo-milling. The effect of cryo-milling then hot-pressing of undoped ZnSb was investigated and compared with that of room temperature ball-milling and hot-pressing under different temperature conditions. ZnSb is a semiconductor with favorable thermoelectric properties when doped. We used undoped ZnSb to study the effect of nanostructuring on lattice thermal conductivity, and with little contribution at room temperature from electronic thermal conductivity. Grain growth was observed to occur during hot-pressing, as observed by transmission electron microscopy and x-ray diffraction. The thermal conductivity was lower for cryo-milled samples than for room-temperature ball-milled samples. The thermal conductivity also depended on hot-pressing conditions. The thermal conductivity could be varied by a factor of two by adjusting the process conditions and could be less than a third that of single-crystal ZnSb.


Nanostructuring ZnSb thermal conductivity thermoelectric materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Jaya Nolt of UCSB for performing XRD at different temperatures. X.S. is grateful for help with the rapid hot-press at California Institute of Technology (c/o Jeff Snyder) and use of high-temperature Hall setup. This work was supported by the Norwegian Research Council under contract NFR11-40-6321 (NanoThermo) and the University of Oslo. X.S. acknowledges financial support by a Kristine Bonnevie stipend from University of Oslo, a travel grant, and infrastructure grants from the Norwegian Nano-Network and from NorFab.


  1. 1.
    G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, and T. Caillat, Int. Mater. Rev. 48, 45 (2003).CrossRefGoogle Scholar
  2. 2.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  3. 3.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  4. 4.
    P. Pichanusakorn and P. Bandaru, Mat. Sci. Eng. R 67, 19 (2010).CrossRefGoogle Scholar
  5. 5.
    M. Zebarjadi, Z.X. Bian, R. Singh, A. Shakouri, R. Wortman, V. Rawat, and T. Sands, J. Electron. Mater. 38, 960 (2009).CrossRefGoogle Scholar
  6. 6.
    G.H. Zeng, J.M.O. Zide, W. Kim, J.E. Bowers, A.C. Gossard, Z.X. Bian, Y. Zhang, A. Shakouri, S.L. Singer, and A. Majumdar, J. Appl. Phys. 101, 034502 (2007).CrossRefGoogle Scholar
  7. 7.
    C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010).CrossRefGoogle Scholar
  8. 8.
    J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Edit. 48, 8616 (2009).CrossRefGoogle Scholar
  9. 9.
    M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).CrossRefGoogle Scholar
  10. 10.
    J.R. Szczech, J.M. Higgins, and S. Jin, J. Mater. Chem. 21, 4037 (2011).CrossRefGoogle Scholar
  11. 11.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).CrossRefGoogle Scholar
  12. 12.
    Je-Hyeong Bahk, Zhixi Bian, and Ali Shakouri, Phys. Rev. B 89, 075204 (2014).CrossRefGoogle Scholar
  13. 13.
    Mona Zebarjadi, Giri Joshi, Gaohua Zhu, Yu Bo, Austin Minnich, Yucheng Lan, Xiaowei Wang, Mildred Dresselhaus, Zhifeng Ren, and Gang Chen, Nano Lett. 11, 2225 (2011).CrossRefGoogle Scholar
  14. 14.
    Hong Zhu, Wenhao Sun, Rickard Armiento, Predrag Lazic, and Gerbrand Ceder, Appl. Phys. Lett. 104, 082107 (2014).CrossRefGoogle Scholar
  15. 15.
    M.I. Fedorov, L.V. Prokof’eva, D.A. Pshenay-Severin, A.A. Shabaldin, and P.P. Konstantinov, J. Electron. Mater. 43, 2314 (2014).CrossRefGoogle Scholar
  16. 16.
    M.I. Fedorov, L.V. Prokofieva, Y.I. Ravich, P.P. Konstantinov, D.A. Pshenay-Severin, and A.A. Shabaldin, Semiconductors 48, 432 (2014).CrossRefGoogle Scholar
  17. 17.
    P.H.M. Bottger, G.S. Pomrehn, G.J. Snyder, and T.G. Finstad, Phys. Status Solidi A 208, 2753 (2011).CrossRefGoogle Scholar
  18. 18.
    K. Valset, P.H.M. Bottger, J. Tafto, and T.G. Finstad, J. Appl. Phys. 111, 023703 (2012).CrossRefGoogle Scholar
  19. 19.
    P. Jund, R. Viennois, X. Tao, K. Niedziolka, and J.C. Tédenac, Phys. Rev. B 85, 225105 (2012).CrossRefGoogle Scholar
  20. 20.
    D. Eklöf, A. Fischer, Y. Wu, E.W. Scheidt, W. Scherer, and U. Häussermann, J. Mater. Chem. A 1, 1407 (2013).CrossRefGoogle Scholar
  21. 21.
    L. Bjerg, B.B. Iversen, and G.K.H. Madsen, Phys. Rev. B 89, 024304 (2014).CrossRefGoogle Scholar
  22. 22.
    K. Niedziolka, R. Pothin, F. Rouessac, R.M. Ayral, and P. Jund, J.Phys. Condens. Mat. 26, 365401 (2014).CrossRefGoogle Scholar
  23. 23.
    D.B. Xiong, N.L. Okamoto, and H. Inui, Scr. Mater. 69, 397 (2013).CrossRefGoogle Scholar
  24. 24.
    Chinatsu Okamura, Takashi Ueda, and Kazuhiro Hasezaki, Mater. Trans. 51, 860 (2010).CrossRefGoogle Scholar
  25. 25.
    D.M. Rowe, V.S. Shukla, and S. Savvides, Nature 290, 765 (1981).CrossRefGoogle Scholar
  26. 26.
    G. Zhu, H. Lee, Y. Lan, X. Wang, G. Joshi, D. Wang, J. Yang, D. Vashaee, H. Guilbert, A. Pillitteri, M. Dresselhaus, G. Chen, and Z. Ren, Phys. Rev. Lett. 102, 196803 (2009).CrossRefGoogle Scholar
  27. 27.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).CrossRefGoogle Scholar
  28. 28.
    C.Y. Wu and W.D. Ken, Solid State Electron. 26, 675 (1983).CrossRefGoogle Scholar
  29. 29.
    N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, and D. Narducci, Nanotechnology 24, 205402 (2013).CrossRefGoogle Scholar
  30. 30.
    Gabi Schierning, Phys. Status Solidi A 211, 1235 (2014).CrossRefGoogle Scholar
  31. 31.
    A.D. LaLonde, T. Ikeda, and G.J. Snyder, Rev. Sci. Instrum. 82, 025104 (2011).CrossRefGoogle Scholar
  32. 32.
    J.I. Langford and A.J.C. Wilson, J. Appl. Crystallogr. 11, 102 (1978).CrossRefGoogle Scholar
  33. 33.
    G. Nichols, S. Byard, M.J. Bloxham, J. Botterill, N.J. Dawson, A. Dennis, V. Diart, N.C. North, and J.D. Sherwood, J. Pharm. Sci. 91, 2103 (2002).CrossRefGoogle Scholar
  34. 34.
    M.P.H. Böttger, K. Valset, S. Deledda, and T.G. Finstad, J. Electron. Mater. 39, 1583 (2010).CrossRefGoogle Scholar
  35. 35.
    P.J. Shaver and J. Blair, Phys. Rev. 141, 649 (1966).CrossRefGoogle Scholar
  36. 36.
    G.S. Nolas and J.H. Goldsmid, Thermal Conductivity: Theory, Properties, and Applications, ed. T.M. Tritt (New York: Kluwer Academic Publishers, 2004), p. 115.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • X. Song
    • 1
    Email author
  • K. Valset
    • 1
  • J.S. Graff
    • 2
  • A. Thøgersen
    • 1
    • 2
  • A.E. Gunnæs
    • 1
  • S. Luxsacumar
    • 2
  • O.M. Løvvik
    • 1
    • 2
  • G.J. Snyder
    • 3
  • T.G. Finstad
    • 1
  1. 1.Department of PhysicsUniversity of OsloOsloNorway
  2. 2.SINTEF Mat and ChemOsloNorway
  3. 3.Materials ScienceCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations