Skip to main content
Log in

Investigation on the Properties of Nonpolar m-Plane GaN-Based Light-Emitting Diode Wafers Grown on LiGaO2(100) Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

High-quality nonpolar m-plane GaN-based light-emitting diode (LED) wafers on LiGaO2(100) substrates have been grown in this work by the combination of pulsed laser deposition and molecular beam epitaxy technologies. This work systemically studies the crystalline quality, surface morphology, as well as optoelectronic properties of as-grown nonpolar m-plane GaN-based LED wafers. The as-grown nonpolar m-plane GaN-based LED wafers on LiGaO2(100) substrates show good structural properties with estimated dislocation density ∼108 cm−2 and abrupt InGaN/GaN interfaces. A photoluminescence peak at approximately 446 nm with full-width at half-maximum (FWHM) of 21.2 nm is identified at room temperature. A strong electroluminescence (EL) peak observed at 446 nm with FWHM of 20.7 nm is obtained at an injection current of 20 mA. Furthermore, there is a slight blue shift in the EL emission wavelength with increase in the injection current, while the EL FWHM can be kept stable thanks to the absence of the quantum confined Stark effect. This study of high-quality nonpolar m-plane GaN-based LEDs is of paramount importance for future application of high-efficiency GaN-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Wang, H. Yang, and G. Li, CrystEngComm 15, 2669 (2013).

    Article  Google Scholar 

  2. Z.X. Zhang, X.J. Pan, T. Wang, L. Jia, L.X. Liu, W.B. Wang, and E.Q. Xie, J. Electron. Mater. 37, 1049 (2008).

    Article  Google Scholar 

  3. T. Makimoto, K. Kumarkura, T. Nishida, and N. Kobayashi, J. Electron. Mater. 31, 313 (2002).

    Article  Google Scholar 

  4. J.J. Wierer, A. David, and M.M. Megens, Nat. Photonics 3, 163 (2009).

    Article  Google Scholar 

  5. W. Wang, H. Yang, and G. Li, J. Mater. Chem. C 1, 4070 (2013).

    Article  Google Scholar 

  6. S.P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. Pan, C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J.S. Speck, and S. Nakamura, Acta Mater. 61, 945 (2013).

    Article  Google Scholar 

  7. L.X. Zhao, E.J. Thrush, C.J. Humphreys, and W.A. Phillips, J. Appl. Phys. 103, 024501 (2008).

    Article  Google Scholar 

  8. G. Moldovan, P. Kazemian, P.R. Edwards, V.K.S. Ong, O. Kurniawan, and C.J. Humphreys, Ultramicroscopy 107, 382 (2007).

    Article  Google Scholar 

  9. Y. Taniyasu, M. Kasu, and T. Makimoto, Nature 441, 325 (2006).

    Article  Google Scholar 

  10. F.A. Ponce and D.P. Bour, Nature 386, 351 (1997).

    Article  Google Scholar 

  11. K. Chung, C.H. Lee, and G.C. Yi, Science 330, 655 (2010).

    Article  Google Scholar 

  12. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).

    Article  Google Scholar 

  13. S. Nakagawa, H. Tsujimura, K. Okamoto, M. Kubota, and H. Ohta, Appl. Phys. Lett. 91, 171110 (2007).

    Article  Google Scholar 

  14. B. Liu, R. Zhang, Z.L. Xie, C.X. Liu, J.Y. Kong, J. Yao, Q.J. Liu, Z. Zhang, D.Y. Fu, X.Q. Xiu, H. Lu, P. Chen, P. Han, S.L. Gu, Y. Shi, and Y.D. Zheng, Appl. Phys. Lett. 91, 253506 (2007).

    Article  Google Scholar 

  15. K. Tadatomo and N. Okada, Proc. SPIE 7954, 795416 (2013).

    Article  Google Scholar 

  16. Y.I. Alivov, E.V. Kalinina, A.E. Cherenkov, D.C. Look, B.M. Ataev, A.K. Omaev, M.V. Chukichev, and D.M. Bagnall, Appl. Phys. Lett. 83, 4719 (2003).

    Article  Google Scholar 

  17. K. Kim, M.C. Schmidt, H. Sato, F. Wu, N. Fellows, M. Saito, K. Fujito, J.S. Speck, S. Nakamura, and S.P. DenBaar, Phys. Status Solidi R 1, 125 (2007).

    Article  Google Scholar 

  18. T. Ishii, Y. Tazoh, and S. Miyazawa, J. Cryst. Growth 189/190, 208 (1998).

    Article  Google Scholar 

  19. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992).

    Article  Google Scholar 

  20. D. Strauch, Landolt-Börnstein Group III Condensed Matter 44D, 313 (2011).

    Article  Google Scholar 

  21. K. Xu, J. Xu, P.Z. Deng, R.S. Qiu, and Z.J. Fang, Phys. Status Solidi (a) 176, 589 (1999).

    Article  Google Scholar 

  22. M.M.C. Chou, C.L. Chen, D.R. Hang, and W.T. Yang, Thin Solid Films 519, 5066 (2011).

    Article  Google Scholar 

  23. K. Sakurada, A. Kobayashi, Y. Kawaguchi, J. Ohta, and H. Fujioka, Appl. Phys. Lett. 90, 211913 (2007).

    Article  Google Scholar 

  24. B. Veliěkov, A. Mogilatenko, R. Bertram, D. Klimm, R. Uecker, W. Neumann, and R. Fornari, J. Cryst. Growth 310, 214 (2008).

    Article  Google Scholar 

  25. F. Scholz, Semicond. Sci. Technol. 27, 024002 (2012).

    Article  Google Scholar 

  26. W.Q. Yang, F.X. Gan, P.Z. Deng, J. Xu, S.Z. Li, and R. Zhang, J. Inorg. Mater. 18, 215 (2003).

    Google Scholar 

  27. K. Iwata, H. Asahi, K. Asami, R. Kuroiwa, and S. Gonda, Jpn. J. Appl. Phys. 36, 661 (1997).

    Article  Google Scholar 

  28. G.Q. Li, S.J. Shih, and Z.Y. Fu, Chem. Commun. 46, 1206 (2010).

    Article  Google Scholar 

  29. Y.B. Tao, Z.Z. Chen, T.J. Yu, Y. Yin, X.N. Kang, Z.J. Yang, G.Z. Ran, and G.Y. Zhang, J. Cryst. Growth 318, 509 (2011).

    Article  Google Scholar 

  30. B.H. Kong, W.S. Han, H.K. Cho, M.Y. Kim, R.J. Choi, and B.K. Kim, J. Cryst. Growth 310, 4916 (2008).

    Article  Google Scholar 

  31. N.H. Niu, H.B. Wang, J.P. Liu, N.X. Liu, Y.H. Xing, J. Han, J. Deng, and G.D. Shen, J. Cryst. Growth 286, 209 (2006).

    Article  Google Scholar 

  32. X. Xu, Y. Du, and S.M. George, J. Vac. Sci. Technol. A 23, 581 (2005).

    Article  Google Scholar 

  33. T.R. Itzdorf, Modern Electroplating, 5th ed., ed. M. Schlesinger and M. Paunovic (Hoboken: Wiley, 2010),

    Google Scholar 

  34. W. Yang, W. Wang, Y. Lin, Z. Liu, S. Zhou, H. Qian, F. Gao, S. Zhang, and G. Li, J. Mater. Chem. C 2, 801 (2014).

    Article  Google Scholar 

  35. C.H. Chiu, P.M. Tu, S.P. Chang, C.C. Lin, C.Y. Jang, Z.Y. Li, H.C. Yang, H.W. Zan, H.C. Kuo, T.C. Lu, S.C. Wang, and C.Y. Chang, Jpn. J. Appl. Phys. 51, 04DG11 (2012).

    Article  Google Scholar 

  36. S.T. Li, F.Y. Jiang, G.H. Fan, W.Q. Fang, and L. Wang, Phys. B 391, 169 (2007).

    Article  Google Scholar 

  37. Y.J. Liu, T.Y. Tsai, C.H. Yen, L.Y. Chen, T.H. Tsai, C.C. Huang, T.Y. Chen, C.H. Hsu, and W.C. Liu, Opt. Express 18, 2729 (2010).

    Article  Google Scholar 

  38. A.Y. Polyakov, A.V. Govorkov, N.B. Smirnov, A.V. Markov, I.H. Lee, J.W. Ju, and S.J. Pearton, Appl. Phys. Lett. 94, 142103 (2009).

    Article  Google Scholar 

  39. Y.H. Cho, F. Fedler, R.J. Hauenstein, G.H. Park, J.J. Song, S. Keller, U.K. Mishra, and S.P. DenBaars, J. Appl. Phys. 85, 3006 (1999).

    Article  Google Scholar 

  40. Q.L. Zhang, F.Y. Meng, P.A. Crozier, N. Newman, and S. Mahajan, Acta Mater. 59, 3759 (2011).

    Article  Google Scholar 

  41. L.S. Wang, S. Tripathy, B.Z. Wang, and S.J. Chua, Appl. Surf. Sci. 253, 214 (2006).

    Article  Google Scholar 

  42. H. Morkoc, Mater. Sci. Eng. R 33, 135 (2001).

    Article  Google Scholar 

  43. S. Tripathy, S.J. Chua, P. Chen, and Z.L. Miao, J. Appl. Phys. 92, 3503 (2002).

    Article  Google Scholar 

  44. H.D. Zhang, Y.L. Shao, L. Zhang, X.P. Hao, Y.Z. Wu, X.Y. Liu, Y.B. Dai, and Y. Tian, CrystEngComm 14, 4777 (2012).

    Article  Google Scholar 

  45. Y.Q. Li, W.Q. Fang, W.H. Liu, H.C. Liu, C.L. Mo, L. Wang, and F.Y. Jiang, J. Lumin. 122–123, 567 (2007).

    Article  Google Scholar 

  46. A. Ubukata, K. Ikenaga, N. Akutsu, A. Yamaguchi, K. Matsumoto, T. Yamazaki, and T. Egawa, J. Cryst. Growth 298, 198 (2007).

    Article  Google Scholar 

  47. R.M. Farrell, C.J. Neufeld, S.C. Cruz, J.R. Lang, M. Iza, S. Keller, S. Nakamura, S.P. DenBaars, U.K. Mishra, and J.S. Speck, Appl. Phys. Lett. 98, 201107 (2011).

    Article  Google Scholar 

  48. M.D. Craven, S.H. Lim, F. Wu, J.S. Speck, and S.P. DenBaars, Appl. Phys. Lett. 81, 1201 (2002).

    Article  Google Scholar 

  49. B.A. Haskell, T.J. Baker, M.B. McLaurin, F. Wu, P.T. Fini, S.P. DenBaars, J.S. Speck, and S. Nakamura, Appl. Phys. Lett. 86, 111917 (2005).

    Article  Google Scholar 

  50. R.M. Farrell, E.C. Young, F. Wu, S.P. DenBaars, and J.S. Speck, Semicond. Sci. Technol. 27, 024001 (2012).

    Article  Google Scholar 

  51. K. Arai, T. Suzuki, and T. Atsumi, J. Electrochem. Soc. 132, 1667 (1985).

    Article  Google Scholar 

  52. V. Ramachandran, R.M. Feenstra, W.L. Sarney, L. Salamanca-Riba, J.E. Northrup, L.T. Romano, and D.W. Greve, Appl. Phys. Lett. 75, 808 (1999).

    Article  Google Scholar 

  53. Z.L. Miao, T.J. Yu, F.J. Xu, J. Song, C.C. Huang, X.Q. Wang, Z.J. Yang, G.Y. Zhang, X.P. Zhang, D.P. Yu, and B. Shen, Appl. Phys. Lett. 95, 231909 (2009).

    Article  Google Scholar 

  54. H.K. Cho, J.Y. Lee, G.M. Yang, and C.S. Kim, Appl. Phys. Lett. 79, 215 (2001).

    Article  Google Scholar 

  55. S.F. Li, J. Schörmann, D.J. As, and K. Lischka, Appl. Phys. Lett. 90, 071903 (2007).

    Article  Google Scholar 

  56. D.R. Hang, M.M.C. Chou, C. Mauder, and M. Heuken, J. Cryst. Growth 312, 1329 (2010).

    Article  Google Scholar 

  57. H. Masui, S. Nakamura, S.P. DenBaars, and U.K. Mishra, IEEE Trans. Electron Devices 57, 88 (2010).

    Article  Google Scholar 

  58. S. Chichibu, T. Sota, K. Wada, and S. Nakamura, J. Vac. Sci. Technol. B 16, 2204 (1998).

    Article  Google Scholar 

  59. E. Kioupakis, Q.M. Yan, and C.G. Van de Walle, Appl. Phys. Lett. 101, 231107 (2012).

    Article  Google Scholar 

  60. Y.J. Zhao, S. Tanaka, C.C. Pan, K.J. Fujito, D. Feezell, J.S. Speck, S.P. DenBaars, and S. Nakamura, Appl. Phys. Express 4, 082104 (2011).

    Article  Google Scholar 

  61. Y.D. Lin, A. Chakraborty, S. Brinkley, H.C. Kuo, T. Melo, K. Fujito, J.S. Speck, S.P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 94, 261108 (2009).

    Article  Google Scholar 

  62. H. Wang, S. Zhou, Z. Lin, X. Hong, and G. Li, Jpn. J. Appl. Phys. 52, 092101 (2013).

    Article  Google Scholar 

  63. S. Nakamura, MRS Bull. 34, 101 (2009).

    Article  Google Scholar 

  64. Y. Taniyasu, J.F. Carlin, A. Castiglia, R. Butté, and N. Grandjean, Appl. Phys. Lett. 101, 082113 (2012).

    Article  Google Scholar 

  65. K.M. Song, J.M. Kim, B.K. Kang, D.H. Yoon, S. Kang, S.W. Lee, and S.N. Lee, Appl. Phys. Lett. 100, 212103 (2012).

    Article  Google Scholar 

  66. S. Chichibu, T. Sota, K. Wada, and S. Nakamura, J. Vac. Sci. Technol. B 16, 2204 (1998).

    Article  Google Scholar 

  67. T. Wang, D. Nakagawa, J. Wang, T. Sugahara, and S. Sakai, Appl. Phys. Lett. 73, 3571 (2007).

    Article  Google Scholar 

  68. J.Z. Liu, M.D.B. Charlton, C.H. Lin, K.Y. Lee, C. Krishnan, and M.C. Wu, IEEE J. Quantum Electron. 50, 314 (2014).

    Article  Google Scholar 

  69. A. Niwa, T. Ohtoshi, and T. Kuroda, Appl. Phys. Lett. 70, 2159 (1997).

    Article  Google Scholar 

  70. X. Li, X. Ni, H.Y. Liu, F. Zhang, S. Liu, J. Lee, V. Avrutin, Ü. ÖzgÜr, T. Paskova, G. Mulholland, K.R. Evans, and H. Morkoç, Phys. Status Solidi C 8, 1560 (2011).

    Article  Google Scholar 

  71. Y.J. Lee, C.H. Chiu, C.C. Ke, P.C. Lin, T.C. Lu, H.C. Kuo, and S.C. Wang, IEEE J. Sel. Top. Quantum Electron. 15, 1137 (2009).

    Article  Google Scholar 

  72. J.Y. Zhang, L.E. Cai, B.P. Zhang, X.L. Hu, F. Jiang, J.Z. Yu, and Q.M. Wang, Appl. Phys. Lett. 95, 161110 (2009).

    Article  Google Scholar 

  73. L.H. Peng, C.W. Chuang, and L.H. Lou, Appl. Phys. Lett. 74, 795 (1999).

    Article  Google Scholar 

  74. R.M. Lin, S.F. Yu, S.J. Chang, T.H. Chiang, S.P. Chang, and C.H. Chen, Appl. Phys. Lett. 101, 081120 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Wang, W., Lin, Y. et al. Investigation on the Properties of Nonpolar m-Plane GaN-Based Light-Emitting Diode Wafers Grown on LiGaO2(100) Substrates. J. Electron. Mater. 44, 2670–2678 (2015). https://doi.org/10.1007/s11664-015-3705-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3705-9

Keywords

Navigation