Skip to main content
Log in

Photovoltaic Study of Chemically Derived Titanium-Doped Polythiophene Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present work, titanium (Ti)-doped polythiophene (PTh) was synthesized by a chemical route using titanium chloride as oxidant. As-synthesized composites were further used for fabrication of photovoltaic (PV) cells with indium tin oxide/Ti-doped PTh/aluminum architecture. Structural, morphological, and optical analyses of as-synthesized composites were carried out through x-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), ultraviolet–visible (UV–Vis) spectroscopy, and photoluminescence (PL) measurements. A broad peak was found in the PL spectra of the composites at around 480 nm, indicating high charge generation efficiency. Different PV parameters of the fabricated PV cells were measured at room temperature under incandescent light of 100 W/m2. The optimized PV cell exhibited short-circuit current (I sc) and open-circuit voltage (V oc) on the order of 176 μA and 0.595 V, respectively. The values of I sc and V oc were used to compute the fill factor, which was found to be 0.521. The corresponding power conversion efficiency associated with the optimized cell was found to be 2.41%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H. Jo, H. Chang, S.K. Kim, K.M. Roh, J. Kim, and H.D. Jang, Mater. Lett. 131, 244 (2014).

    Article  Google Scholar 

  2. B. Hu, Q. Tang, B. He, L. Lin, and H. Chen, J. Power Sources 267, 445 (2014).

    Article  Google Scholar 

  3. M. Shi, L. Fu, X. Hu, L. Zuo, D. Deng, J. Chen, and H. Chen, Polym. Bull. 68, 1867 (2012).

    Article  Google Scholar 

  4. L.N. Yang, Z.Z. Sun, Q.S. Li, S.L. Chen, Z.S. Li, and T.A. Niehaus, J. Power Sources 268, 137 (2014).

    Article  Google Scholar 

  5. K.S. Yook and J.Y. Lee, Synth. Met. 162, 1594 (2012).

    Article  Google Scholar 

  6. L. Angiolini, V. Cocchi, M. Lanzi, E. Salatelli, D. Tonelli, and Y. Vlamidis, Mater. Chem. Phys. 146, 464 (2014).

    Article  Google Scholar 

  7. D.R. Bekci and S. Erten-Ela, Renewable Energy 43, 378 (2012).

    Article  Google Scholar 

  8. C. Liang, Y. Wang, D. Li, X. Ji, F. Zhang, and Z. He, Sol. Energy Mater. Sol. Cells 127, 67 (2014).

    Article  Google Scholar 

  9. E. Gondek, Opt. Mater. 36, 98 (2013).

    Article  Google Scholar 

  10. X. Chen, L. Chen, K. Yao, and Y. Chen, ACS Appl. Mater. Interfaces 5, 8321 (2013).

    Article  Google Scholar 

  11. V.J. Babu, S. Vempati, S. Sundarrajan, M. Sireesha, and S. Ramakrishna, Sol. Energy 106, 1 (2014).

    Article  Google Scholar 

  12. A. Lewkowicz, A. Synak, B. Grobelna, P. Bojarski, R. Bogdanowicz, J. Karczewski, K. Szczodrowski, and M. Behrendt, Opt. Mater. 36, 1739 (2014).

    Article  Google Scholar 

  13. J. Jeong, J. Lee, H. Kim, H. Kim, and S. Na, Sol. Energy Mater. Sol. Cells 94, 1840 (2010).

    Article  Google Scholar 

  14. I. Etxebarria, J.G. Tait, R. Gehlhaar, R. Pacios, and D. Cheyns, Org. Electron. 14, 430 (2013).

    Article  Google Scholar 

  15. L.F. Marchesi and E.C. Pereira, Synth. Met. 194, 82 (2014).

    Article  Google Scholar 

  16. J. Liu, Y. Wang, and D. Sun, Renewable Energy 38, 214 (2012).

    Article  Google Scholar 

  17. N. Orhan and M.C. Baykul, Solid-State Electron. 78, 147 (2012).

    Article  Google Scholar 

  18. P. Piyakulawat, A. Keawprajak, K. Jiramitmongkon, M. Hanusch, J. Wlosnewski, and U. Asawapirom, Sol. Energy Mater. Sol. Cells 95, 2167 (2011).

    Article  Google Scholar 

  19. P. Granero, V.S. Balderrama, J. Ferré-Borrull, J. Pallarès, and L.F. Marsal, Curr. Appl. Phys. 13, 1801 (2013).

    Article  Google Scholar 

  20. Z. Hu, J. Zhang, Z. Hao, and Y. Zhao, Sol. Energy Mater. Sol. Cells 95, 2763 (2011).

    Article  Google Scholar 

  21. Z. Han, J. Zhang, X. Yang, H. Zhua, and W. Cao, Sol. Energy Mater. Sol. Cells 94, 755 (2010).

    Article  Google Scholar 

  22. J. Wu, G. Yue, Y. Xiao, J. Lin, M. Huang, Z. Lan, Q. Tang, Y. Fang, L. Fan, S. Yin, and T. Sato, Sci. Rep. (2013). doi:10.1038/srep01283.

    Google Scholar 

  23. C.Y. Kwong, W.C. Choy, A.B. Djurisi, P.C. Chui, K.W. Cheng, and W.K. Chan, Nanotechnology 15, 1156 (2004).

    Article  Google Scholar 

  24. N. Das and P. Sokol, Renewable Energy 35, 2683 (2010).

    Article  Google Scholar 

  25. A. Hennache, N. Mustapha, and Z. Fekkai, Br. J. Appl. Sci. Tech. 4, 604 (2014).

    Article  Google Scholar 

  26. A. Haldar, S. Maity, and N.B. Manik, Ionics 14, 427 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Head of the Department of Physics, Sant Gadge Baba Amravati University, Amravati for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.A. Waghuley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takpire, S., Waghuley, S. Photovoltaic Study of Chemically Derived Titanium-Doped Polythiophene Composites. J. Electron. Mater. 44, 2807–2812 (2015). https://doi.org/10.1007/s11664-015-3704-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3704-x

Keywords

Navigation