Skip to main content
Log in

High Dielectric Constants of Composites of Fiber-Like Copper Phthalocyanine-Coated Graphene Oxide Embedded in Poly(arylene Ether Nitriles)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The surfaces of graphene oxide (GO) sheets were coated with fiber-like copper phthalocyanine (CuPc) by use of a solvothermal process. The product, GO@ CuPc, was used as a filler in high-performance poly(arylene ether nitrile) (PEN) composites. Films of the composites had high thermal stability, and glass-transition temperatures in the range 170–182°C. Thermogravimetric analysis revealed their initial decomposition temperatures were in the range 470–483°C. Scanning electron microscopy showed that dispersion of GO@ CuPc in PEN was much better than that of unmodified GO; this can be attributed to relatively strong interaction between GO@CuPc and the PEN matrix. All the composite films were highly flexible and had enhanced mechanical properties. Tensile strengths of the composites were as high as 89 MPa in the presence of 1 wt.% GO@CuPc, an increase of 20% compared with pure PEN film. Dielectric constants of the composite films were as high as 52 at 100 Hz when the GO@CuPc content was 5%. Because of these excellent mechanical and dielectric properties, PEN/GO@CuPc composites have much potential for use as film capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kashiwagi, F. Du, J.F. Douglas, K.I. Winey, R.H. Harris Jr., and J.R. Shields, Nat. Mater. 4, 928 (2005).

    Article  Google Scholar 

  2. A. Saxena, R. Saxena, V.L. Rao, M. Kanakavel, and K.N. Ninan, Polym. Bull. 50, 219 (2003).

    Google Scholar 

  3. C. Li, Y. Gu, and X. Liu, Mater. Lett. 60, 137 (2005).

    Article  Google Scholar 

  4. S. Park and R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009).

    Article  Google Scholar 

  5. D.R. Dreyer, R.S. Ruoff, and C.W. Bielawski, Angew. Chem. Int. Ed. 49, 9336 (2010).

    Article  Google Scholar 

  6. G. Xian, R. Walter, and F. Haupert, Compos. Sci. Technol. 66, 3199 (2006).

    Article  Google Scholar 

  7. R.M. Rodgers, H. Mahfuz, V.K. Rangari, N. Chisholm, and S. Jeelani, Macromol. Mater. Eng. 290, 43 (2005).

    Google Scholar 

  8. H. Wu, C.C. Ma, Y. Yang, H.C. Kuan, C.C. Yang, and C.L. Chiang, J. Polym. Sci. Pol. Phys. 44, 1098 (2006).

    Google Scholar 

  9. Y. Zhou, P. Farhana, V.K. Rangari, and S. Jeelani, Mat. Sci. Eng. A 426, 221 (2006).

    Article  Google Scholar 

  10. N. Abacha, M. Kubouchi, K. Tsuda, and T. Sakai, Express Polym. Lett. 1, 364 (2007).

    Article  Google Scholar 

  11. J. Du, J. Bai, and H. Cheng, Express. Polym. Lett. 1, 253 (2007).

    Article  Google Scholar 

  12. J. Vickery, A. Patil, and S. Mann, Adv. Mater. 21, 2180 (2009).

    Article  Google Scholar 

  13. S. Stankovich, R. Piner, S. Nguyen, and R. Ruoff, Carbon 44, 3342 (2006).

    Article  Google Scholar 

  14. D. Dorina, N. Frank, L. Christiane, M. Martin, and N. Matthias, Chem. Mater. 20, 6889 (2008).

    Article  Google Scholar 

  15. X. Yang, Y. Lei, J. Zhong, R. Zhao, and X. Liu, J. Appl. Polym. Sci. 119, 882 (2011).

    Article  Google Scholar 

  16. W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  Google Scholar 

  17. C. Zhu, S. Guo, Y. Fang, and S. Dong, ACS Nano 4, 2429 (2010).

    Article  Google Scholar 

  18. Z. Guo, C. Shao, M. Zhang, J. Mu, Z. Zhang, P. Zhang, B. Chen, and Y. Liu, J. Mater. Chem. 21, 12083 (2011).

    Article  Google Scholar 

  19. A. Saxena, V.L. Rao, and K.N. Ninan, Eur. Polym. J. 39, 57 (2003).

    Article  Google Scholar 

  20. A.W. Snow and N.L. Jarvis, J. Am. Chem. Soc. 106, 4706 (1983).

    Article  Google Scholar 

  21. J. Zhong, H. Tang, Y. Chen, and X. Liu, J. Mater. Sci. 21, 1244 (2010).

    Google Scholar 

  22. C. Brosseau, P. Queffelec, and P. Talbot, J. Appl. Phys. 89, 4532 (2001).

    Article  Google Scholar 

  23. Z. Dang, L. Wang, Y. Yin, and Q. Zhang, Adv. Mater. 19, 852 (2007).

    Article  Google Scholar 

  24. A.K. Jin, G.S. Dong, J.K. Tae, and R.Y. Jae, Carbon 44, 1898 (2006).

    Article  Google Scholar 

  25. H.L. Seung, W.K. Myung, H.K. Sung, and R.Y. Jae, Eur. Polym. J. 44, 1620 (2008).

    Article  Google Scholar 

  26. B. Mathieu, K. Marianna, and E.M. Khalil, Polymer 51, 5506 (2010).

    Article  Google Scholar 

  27. Q. Zheng, M. Du, B. Yang, and G. Wu, Polymer 42, 5743 (2001).

    Article  Google Scholar 

  28. D.P.N. Vlasveld, M. Dejong, H.E.N. Bersee, A.D. Gotsis, and S.J. Picken, Polymer 46, 10279 (2005).

    Article  Google Scholar 

  29. Z. Pu, H. Tang, X. Huang, J. Yang, Y. Zhan, R. Zhao, and X. Liu, Colloid Surf. A 415, 125 (2012).

    Article  Google Scholar 

  30. A.M. Cynthia, L.B. Jeffrey, A. Sivaram, M.T. James, and K. Ramanan, Macromolecules 35, 8825 (2002).

    Article  Google Scholar 

  31. P. Potschke, M. Abdel-Goad, I. Alig, S. Dudkin, and D. Lellinger, Polymer 45, 8863 (2004).

    Article  Google Scholar 

  32. M. Abdalla, D. Dean, D. Adibempe, E. Nyairo, P. Robinson, and G. Thompson, Polymer 48, 5662 (2007).

    Article  Google Scholar 

  33. R. Kalgaonkar and J. Jog, Polym. Int. 57, 114 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Natural Science Foundation of China (Nos. 51173021, 51373028, 51403029), the “863” National Major Program of High Technology (2012AA03A212), and South Wisdom Valley Innovative Research Team Program (2013B6011) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Jia or Xiaobo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Pu, Z., Wang, Z. et al. High Dielectric Constants of Composites of Fiber-Like Copper Phthalocyanine-Coated Graphene Oxide Embedded in Poly(arylene Ether Nitriles). J. Electron. Mater. 44, 2378–2386 (2015). https://doi.org/10.1007/s11664-015-3698-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3698-4

Keywords

Navigation