Skip to main content

Hysteresis Phenomenon in Heat–Voltage Curves of Polypyrrole-Coated Electrospun Nanofibrous and Regular Fibrous Mats

Abstract

This article verifies the hysteresis phenomenon in heat–voltage curves of polypyrrole-coated electrospun nanofibrous and regular fibrous mats. A third-order polynomial model fits the heat–voltage data better than a second-order polynomial model. It was also observed that the hysteresis loop area of nanofibrous and regular fibrous mats increases with decreasing fiber diameter. Moreover, the curvature of the hysteresis loops is significantly affected by the fiber diameter. In fact, the slope of the curvatures increases with decreasing fiber diameter.

This is a preview of subscription content, access via your institution.

References

  1. A. Oroumei, H. Tavanai, and M. Morshed, Polym. Adv. Technol. 23, 302 (2012).

    Article  Google Scholar 

  2. D.J.A. Brown, H. Brugger, J. Boyd, and P. Paal, N. Engl. J. Med. 367, 1930 (2012).

    Article  Google Scholar 

  3. L.D. Britt, W.H. Dascombe, and A. Rodriguez, Surg. Clin. N. Am. 71, 345 (1991).

    Google Scholar 

  4. B.F.J. Calleja, R.K. Bayer, and T.A. Ezquerra, J. Mater. Sci. 23, 1411 (1988).

    Article  Google Scholar 

  5. D. Cottet, J. Grzyb, T. Kirstein, and G. Tröster, IEEE Trans. Adv. Packag. 26, 182 (2003).

    Article  Google Scholar 

  6. P. Xue and X.M. Tao, J. Appl. Polym. Sci. 98, 1844 (2005).

    Article  Google Scholar 

  7. A.C. Sparavigna, L. Florio, J. Avloni, and A. Henn, Mater. Sci. Appl. 1, 253 (2010).

    Google Scholar 

  8. A. Varesano, L. Dall’Acqua, and C. Tonin, Polym. Degrad. Stab. 89, 125 (2005).

    Article  Google Scholar 

  9. H.H. Kuhn and A.D. Child, Handbook of Conducting Polymers, ed. T.A. Skothern, R.L. Elsenbaumer, and J.R. Reynolds (New York: Marcel Dekker, 1998), p. 993.

    Google Scholar 

  10. S. Shang, X. Yang, X.M. Tao, and S.S. Lam, Polym. Int. 59, 204 (2010).

    Google Scholar 

  11. J. Wang, A. Kaynak, L. Wang, and X. Liu, J. Text. Inst. 97, 265 (2006).

    Article  Google Scholar 

  12. A. Varesano, L. Dall’Acqua, and C. Tonin, Polym. Degrad. Stab. 89, 125 (2005).

    Article  Google Scholar 

  13. G.G. Wallace, T.E. Campbell, and P.C. Innis, Fibers Polym. 8, 135 (2007).

    Article  Google Scholar 

  14. N.V. Bhat, D.T. Seshadri, M.M. Nate, and A.V. Gore, J. Appl. Polym. Sci. 102, 4690 (2006).

    Article  Google Scholar 

  15. E. Hakansson, A. Kaynak, T. Lin, S. Nahavandi, T. Jones, and E. Hu, Synth. Met. 144, 21 (2004).

    Article  Google Scholar 

  16. A. Kaynak and E. Hakansson, Adv. Polym. Technol. 24, 194 (2005).

    Article  Google Scholar 

  17. A. Laforgue, J. Mater. Chem. 20, 8233 (2010).

    Article  Google Scholar 

  18. J.Y. Lee, D.W. Park, and J.O. Lim, Macromol. Res. 11, 481 (2003).

    Article  Google Scholar 

  19. H. Tavanai and A. Kaynak, Synth. Met. 157, 764 (2007).

    Article  Google Scholar 

  20. C.G.V. Burgess, D.H. Everett, and S. Nuttall, Pure Appl. Chem. 61, 1845 (1989).

    Article  Google Scholar 

  21. H. Kim, C. Kim, F. Barlat, E. Pavlina, and M.G. Lee, Mater. Sci. Eng. A 562, 161 (2013).

    Article  Google Scholar 

  22. G. Bertotti, Hysteresis in Magnetism: for Physicists, Materials Scientists, and Engineers (San Diego: Academic, 1998), pp. 31–72.

    Book  Google Scholar 

  23. M. Sjöström, Communication Systems Department (Lausanne: Swiss Federal Institute of Technology, 2001).

    Google Scholar 

  24. T.B. Flanagan, C.N. Park, and W.A. Oates, Prog. Solid State Chem. 23, 291 (1995).

    Article  Google Scholar 

  25. S. Naumov (Ph.D. thesis, Faculty of Physics and Geosciences, University of Leipzig, Leipzig, 2009)

  26. R. Turcu, C. Neamtu, and M. Brie, Synth. Met. 53, 325 (1993).

    Article  Google Scholar 

  27. T. Matencio, J.M. Pernaut, and E. Vieil, J. Braz. Chem. Soc. 14, 90 (2003).

    Article  Google Scholar 

  28. C. Odin, M. Nechtschein, and P. Hapiot, J. Electroanal. Chem. 571, 51 (2004).

    Article  Google Scholar 

  29. M. Grzeszczuk and R. Szostak, J. Electroanal. Chem. 571, 51 (2004).

    Article  Google Scholar 

  30. X. Tan and J.S. Baras, Control of hysteresis in smart actuators, Part I: modeling, parameter identification, and inverse control (Maryland: University of Maryland, 2002).

  31. B. Drinčić, X. Tan, and D.S. Bernstein, Automatica 47, 2658 (2011).

    Article  Google Scholar 

  32. S. Hernández-López, E. Vigueras-Santiago, M. Mayorga-Rojas, and D. Reyes-Contreras, J. Phys. 167, 1 (2009).

    Google Scholar 

  33. M.G. Han and S.S. Im, Polymer 41, 3253 (2000).

    Article  Google Scholar 

  34. F. Chen, J. Zhang, F. Wang, and G. Shi, J. Appl. Polym. Sci. 89, 3390 (2003).

    Article  Google Scholar 

  35. R. Gangopadhyay and A. De, J. Mater. Chem. 12, 3591 (2002).

    Article  Google Scholar 

  36. H. Acar, M. Karakışla, and M. Saçak, Mater. Sci. Semicond. Process. 16, 845 (2013).

    Article  Google Scholar 

  37. T. Lin, L. Wang, X. Wang, and A. Kaynak, Thin Solid Films 479, 77 (2005).

    Article  Google Scholar 

  38. A. Kaynak and E. Hakansson, Adv. Polym. Technol. 27, 194 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Tavanai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oroumei, A., Tavanai, H. & Morshed, M. Hysteresis Phenomenon in Heat–Voltage Curves of Polypyrrole-Coated Electrospun Nanofibrous and Regular Fibrous Mats. J. Electron. Mater. 44, 2250–2259 (2015). https://doi.org/10.1007/s11664-015-3681-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3681-0

Keywords

  • Conducting polymers
  • polypyrrole
  • nanofibers
  • regular fibers
  • hysteresis phenomenon