Effects of Lattice Relaxation on Composition and Morphology in Strained In x Ga1−x As y Sb1−y Epitaxial Layers

Abstract

In x Ga1−x As y Sb1−y is an important semiconductor material for a variety of mid-infrared devices. Its tunable bandgap, adjustable lattice constant, and other material properties make it appealing for developing optoelectronic devices in the 2 μm to 4 μm region. In this work, we report on the mechanisms of strain relaxation in In x Ga1−x As y Sb1−y epitaxial layers with low arsenic and high indium concentrations grown on GaSb (100) substrates. Samples were grown via solid-source molecular beam epitaxy with indium mole fractions between x = 0.1 (0.7% lattice mismatch) and x = 0.4 (2.5% lattice mismatch), and arsenic mole fractions between y = 0 and y = 0.02. Sample thicknesses between 10 nm and 100 nm were produced in order to observe the progression of structure formation. Samples were monitored in situ via reflection high-energy electron diffraction and ex situ using scanning electron microscopy, energy-dispersive spectroscopy, Rutherford backscattering spectroscopy, backscattering Raman spectroscopy, and atomic force microscopy. Results suggest that strain relaxation occurs preferentially along the [011] direction, although some crosshatching is observed. A compositional gradient in the growth direction is also observed, suggesting preferential incorporation of gallium at strained interfaces in order to minimize strain energy.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Basinski, D.J.E. Demars, and J.C. Woolley, J. Phys. C Solid State 7, 716 (1974).

    Article  Google Scholar 

  2. 2.

    D.L. Rode, Phys. Rev. B 2, 4036 (1970).

    Article  Google Scholar 

  3. 3.

    I. Vurgaftman, J. Meyer, and L. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  Google Scholar 

  4. 4.

    R. Russell, G. Rossano, M. Chatelain, D. Lynch, T. Tessensohn, E. Abendroth, D. Kim, and P. Jenniskens, Earth Moon Planets 82–83, 439 (1998).

    Article  Google Scholar 

  5. 5.

    F.E. Hanson, P.M. Poirier, E.J. Schimitschek, and M.A. Arbore, Proc. SPIE 4377, 155 (2001).

    Article  Google Scholar 

  6. 6.

    E. Brown, P. Baldasaro, S. Burger, L. Danielson, D. DePoy, J. Dolatowski, P. Fourspring, G. Nichols, W. Topper, and T. Rahmlow, Status of Thermophotovoltaic Energy Conversion Technology at Lockheed Martin Corp, 2nd International Energy Conversion Engineering Conference, American Institute of Aeronautics and Astronautics (2004).

  7. 7.

    C.A. Wang, C.J. Vineis, H.K. Choi, M.K. Connors, R.K. Huang, L.R. Danielson, G. Nichols, G.W. Charache, D. Donetsky, S. Anikeev, and G. Belenky, AIP Conf. Proc., 653 (2003).

  8. 8.

    M.W. Dashiell, J.F. Beausang, H. Ehsani, G.J. Nichols, D.M. DePoy, L.R. Danielson, P. Talamo, K.D. Rahner, E.J. Brown, S.R. Burger, P.M. Fourspring, W.F. Topper, P.F. Baldasaro, C.A. Wang, R.K. Huang, M.K. Connors, G.W. Turner, Z.A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G.L. Belenky, and S. Luryi, IEEE Trans. Electron Dev. 53, 2879 (2006).

    Article  Google Scholar 

  9. 9.

    S. Adachi, J. Appl. Phys. 61, 4869 (1987).

    Article  Google Scholar 

  10. 10.

    M.J. Cherng, H.R. Jen, C.A. Larsen, G.B. Strigfellow, H. Lundt, and P.C. Taylor, J. Cryst. Growth 77, 408 (1986).

    Article  Google Scholar 

  11. 11.

    C.A. Wang, Appl. Phys. Lett. 76, 2868 (2000).

    Article  Google Scholar 

  12. 12.

    A. Yildirim and J.P. Prineas, J. Vac. Sci. Technol. B 30, 02B104 (2012).

    Article  Google Scholar 

  13. 13.

    A. Yildirim and J.P. Prineas, J. Vac. Sci Technol. B 31, 03C108 (2013).

    Article  Google Scholar 

  14. 14.

    P. Hovington, D. Drouin, and R. Gauvin, Scanning 19, 1 (1997).

    Article  Google Scholar 

  15. 15.

    F.-M. Liu, T.-M. Wang, and L.-D. Zhang, Mater. Res. Bull. 37, 1093 (2002).

    Article  Google Scholar 

  16. 16.

    F.-M. Liu, L.-D. Zhang, M.J. Zheng, and G.H. Li, Appl. Surf. Sci. 158, 281 (2000).

    Article  Google Scholar 

  17. 17.

    K. Kakimoto and T. Katoda, Appl. Phys. Lett. 40, 826 (1982).

    Article  Google Scholar 

  18. 18.

    J. Díaz-Reyes, E. López-Cruz, J.G. Mendoza-Álvarez, and S. Jiménez-Sandoval, J. Appl. Phys. 100, 123503 (2006).

    Article  Google Scholar 

  19. 19.

    I. Sela, I.H. Campbell, B.K. Laurich, D.L. Smith, L.A. Samoska, C.R. Bolognesi, A.C. Gossard, and H. Kroemer, J.␣Appl. Phys. 70, 5608 (1991).

    Article  Google Scholar 

  20. 20.

    P.M.J. Marée, J.C. Barbour, J.F. van der Veen, K.L. Kavanagh, C.W.T. Bulle-Lieuwma, and M.P.A. Viegers, J.␣Appl. Phys. 62, 4413 (1987).

    Article  Google Scholar 

  21. 21.

    A.G. Norman, R.M. France, W.E. McMahon, J.F. Geisz, and M.J. Romero, J. Phys. 471, 012006 (2013).

    Google Scholar 

  22. 22.

    C. Meyer, J. Grayer, D. Paterson, E. Cheng, and G. Triplett, Proc. SPIE 8980, 24 (2014).

    Google Scholar 

  23. 23.

    T. Spila, P. Desjardins, J. D’Arcy-Gall, R.D. Twesten, and J.E. Greene, J. Appl. Phys. 93, 1918 (2003).

    Article  Google Scholar 

  24. 24.

    A.M. Andrews, J.S. Speck, A.E. Romanov, M. Bobeth, and W. Pompe, J. Appl. Phys. 91, 1933 (2002).

    Article  Google Scholar 

  25. 25.

    J.W.P. Hsu, E.A. Fitzgerald, Y.H. Xie, P.J. Silverman, and M.J. Cardillo, Appl. Phys. Lett. 61, 1293 (1992).

    Article  Google Scholar 

  26. 26.

    M.A. Lutz, R.M. Feenstra, F.K. LeGoues, P.M. Mooney, and J.O. Chu, Appl. Phys. Lett. 66, 724 (1995).

    Article  Google Scholar 

  27. 27.

    A.M. Andrews, R. LeSar, M.A. Kerner, J.S. Speck, A.E. Romanov, A.L. Kolesnikova, M. Bobeth, and W. Pompe, J. Appl. Phys. 95, 6032 (2004).

  28. 28.

    S. Pereira, M.R. Correia, E. Pereira, K.P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, Phys. Rev. B 64, (2001).

Download references

Acknowledgements

The authors would like to thank Robert Bedford of the Wright–Patterson Air Force Base, Sensors Directorate for his contributions to this effort. The authors would also like to thank Suchismita Guha for allowing access to the micro-Raman spectrometer. This work was funded Air Force Office of Scientific Research Young Investigator Program Grant Number FA9550-10-1-0482.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gregory Triplett.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meyer, C., Cole, N., Matzat, C. et al. Effects of Lattice Relaxation on Composition and Morphology in Strained In x Ga1−x As y Sb1−y Epitaxial Layers. Journal of Elec Materi 44, 1311–1320 (2015). https://doi.org/10.1007/s11664-015-3662-3

Download citation

Keywords

  • InGaAsSb
  • molecular beam epitaxy
  • nanodashes
  • compositional gradient
  • strain relaxation