Skip to main content
Log in

Local Piezoelectric Properties and Polarity Distribution of ZnO Films Deposited at Different Substrate Temperatures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work we deposited c-axis-oriented ZnO films using radiofrequency magnetron sputtering at substrate temperatures from 200°C to 500°C. We then characterized their local piezoelectric properties and polarity distributions using piezoresponse force microscopy, revealing that these ZnO films contained grains with opposite polarities: O-face and Zn-face. The grains with O-face polarity exhibited larger piezoresponse magnitude than those with Zn-face polarity. As the substrate temperature was increased, the predominant polarization orientation of the films changed from O-face to Zn-face. The film deposited at 300°C showed uniform polarization orientation together with higher piezoresponse magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  2. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).

    Article  Google Scholar 

  3. R. Serhane, S. Abdelli-Messaci, S. Lafane, H. Khales, W. Aouimeur, A. Hassein-Bey, and T. Boutkedjirt, Appl. Surf. Sci. 288, 572 (2014).

    Article  Google Scholar 

  4. Y.Q. Fu, Y. Li, C. Zhao, F. Placido, and A.J. Walton, Appl. Phys. Lett. 101, 194101 (2012).

    Article  Google Scholar 

  5. R. Ro, R. Lee, Z.-X. Lin, C.-C. Sung, Y.-F. Chiang, and S. Wu, Thin Solid Films 529, 470 (2013).

    Article  Google Scholar 

  6. T. Kamohara, M. Akiyama, and N. Kuwano, Appl. Phys. Lett. 92, 093506 (2008).

    Article  Google Scholar 

  7. T. Kamohara, M. Akiyama, N. Ueno, M. Sakamoto, K. Kano, A. Teshigahara, N. Kawahara, and N. Kuwano, Appl. Phys. Lett. 89, 243507 (2006).

    Article  Google Scholar 

  8. J.A. Christman, R.R. Woolcott, A.I. Kingon, and R.J. Nemanich, Appl. Phys. Lett. 73, 3851 (1998).

    Article  Google Scholar 

  9. Y.C. Yang, C. Song, X.H. Wang, F. Zeng, and F. Pan, Appl. Phys. Lett. 92, 012907 (2008).

    Article  Google Scholar 

  10. A. Gruverman and S.V. Kalinin, J. Mater. Sci. 41, 107 (2006).

    Article  Google Scholar 

  11. S.V. Kalinin, A. Rar, and S. Jesse, IEEE Trans. Ultrason. Ferroelectr. 53, 2226 (2006).

    Article  Google Scholar 

  12. D.A. Bonnell, S.V. Kalinin, A.L. Kholkin, and A. Gruverman, MRS Bull. 34, 648 (2009).

    Article  Google Scholar 

  13. T. Jungk, A. Hoffmann, and E. Soergel, Appl. Phys. Lett. 91, 253511 (2007).

    Article  Google Scholar 

  14. P. Bintachitt, S. Trolier-McKinstry, K. Seal, S. Jesse, and S.V. Kalinin, Appl. Phys. Lett. 94, 042906 (2009).

    Article  Google Scholar 

  15. V.V. Shvartsman and A.L. Kholkin, J. Appl. Phys. 108, 042007 (2010).

    Article  Google Scholar 

  16. C. Lichtensteiger, S. Fernandez-Pena, C. Weymann, P. Zubko, and J.-M. Triscone, Nano Lett. 14, 4205 (2014).

    Article  Google Scholar 

  17. I.K. Bdikin, J. Gracio, R. Ayouchi, R. Schwarz, and A.L. Kholkin, Nanotechnology 21, 235703 (2010).

    Article  Google Scholar 

  18. J. Kim, S. Hong, S. Buhlmann, Y. Kim, M. Park, Y.K. Kim, and K. No, J. Appl. Phys. 107, 104112 (2010).

    Article  Google Scholar 

  19. B.J. Rodriguez, A. Gruverman, A.I. Kingon, R.J. Nemanich, and O. Ambacher, Appl. Phys. Lett. 80, 4166 (2002).

    Article  Google Scholar 

  20. L.P. Schuler, N. Valanoor, P. Miller, I. Guy, R.J. Reeves, and M.M. Alkaisi, J. Electron. Mater. 36, 507 (2007).

    Article  Google Scholar 

  21. C.P. Li and B.H. Yang, J. Electron. Mater. 40, 253 (2011).

    Article  Google Scholar 

  22. T. Jungk, A. Hoffmann, and E. Soergel, Appl. Phys. Lett. 89, 163507 (2006).

    Article  Google Scholar 

  23. C.T. Yang, Z.Y. Zeng, Z. Chen, J.S. Liu, and S.R. Zhang, J. Cryst. Growth 293, 299 (2006).

    Article  Google Scholar 

  24. Q.Y. Xu, Y. Wang, X.L. Du, X.L. Du, Q.K. Xue, and Z. Zhang, Appl. Phys. Lett. 84, 2067 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program (“863” Program) of China (No. 2013AA030801), the National Natural Science Foundation (Nos. 61306010 and 61106007), the Natural Science Foundation of Tianjin (No. 13JCZDJC36000), and Outstanding Young University Teacher Foundation of Tianjin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohe Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Dai, W., Xu, S. et al. Local Piezoelectric Properties and Polarity Distribution of ZnO Films Deposited at Different Substrate Temperatures. J. Electron. Mater. 44, 1095–1099 (2015). https://doi.org/10.1007/s11664-015-3659-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3659-y

Keywords

Navigation