Skip to main content
Log in

High-Yield Synthesis, Controllable Evolution, and Thermoelectric Properties of Te/Bi2Te3 Heterostructure Nanostrings

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Te/Bi2Te3 heterostructure nanostrings composed of multiple hexagon Bi2Te3 nanosheets, which were strung together by Te nanowires, were rationally designed and synthesized via an in situ growth process. High-yield heterostructure products were obtained via the two-step solution phase method. The rhombohedral Bi2Te3 nanosheets and hexagonal phase Te nanowires were characterized using x-ray diffractometer patterns and high-resolution transmission electron microscopy images. Detailed scanning electron microscopy and transmission electron microscopy images revealed that the lengths of the nanostrings were approximately 3.6 μm, and the diameters of the Bi2Te3 nanosheets were approximately 290 nm. The results indicated that the dimensions and morphologies of the Te/Bi2Te3 heterostructure nanostrings can be controlled by regulating the dosage of Bi(NO3)3·5H2O from 0 mmol to 3 mmol, and the number of the Bi2Te3 nanosheets can be adjusted by controlling the concentration of N2H4·H2O. Exceedingly low thermal conductivities from 0.45 W m−1 K−1 to 0.49 W m−1 K−1 were demonstrated by the measurements of the thermoelectric properties at near-room temperature from 350 K to 500 K. The phonon scattering mechanisms were systematically analyzed using three-dimensional schematic structure models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.C. Sales, Science 295, 1248 (2002).

    Article  Google Scholar 

  2. G.Q. Zhang, B. Kirk, L. Jauregui, H. Yang, X. Xu, Y. Chen, and Y. Wu, Nano Lett. 12, 56 (2012).

    Article  Google Scholar 

  3. X. Chen, S.N. Girard, F. Meng, E. Lara-Curzio, S. Jin, J.B. Goodenough, J.S. Zhou, and L. Shi, Adv. Energy Mater. 4, 1400452 (2014).

    Google Scholar 

  4. F.J. Disalvo, Science 285, 703 (1999).

    Article  Google Scholar 

  5. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. Quinn, Nature 413, 597 (2001).

    Article  Google Scholar 

  6. Y. Zhou, L.L. Li, Q. Tan, and J.F. Li, J. Alloys Compd. 590, 362 (2014).

    Article  Google Scholar 

  7. A.I. Hochbaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P.D. Yang, Nature 451, 163 (2008).

    Article  Google Scholar 

  8. P. Norouzzadeh, C.W. Myles, and D. Vashaee, J. Alloys Compd. 587, 474 (2014).

    Article  Google Scholar 

  9. C.C. Hsu, Y.N. Liu, and H.K. Ma, J. Alloys Compd. 597, 217 (2014).

    Article  Google Scholar 

  10. G.Q. Zhang, W. Wang, and X.G. Li, Adv. Mater. 20, 3654 (2008).

    Article  Google Scholar 

  11. J. Kang, J.W. Roh, W. Shim, J. Ham, J.S. Noh, and W. Lee, Adv. Mater. 23, 3414 (2011).

    Article  Google Scholar 

  12. W.S. Wang, J. Goebl, L. He, S. Aloni, Y.X. Hu, L. Zhen, and Y.D. Yin, J. Am. Chem. Soc. 132, 17316 (2010).

    Article  Google Scholar 

  13. G.Q. Zhang, H.Y. Fang, H.R. Yang, L.A. Jauregui, Y.P. Chen, and Y. Wu, Nano Lett. 12, 3627 (2012).

    Article  Google Scholar 

  14. H.Y. Fang, T.L. Feng, Y.H. Yang, X.L. Ruan, and Y. Wu, Nano Lett. 13, 2058 (2013).

    Article  Google Scholar 

  15. Q.S. Wang, M. Safdar, Z.X. Wang, and J. He, Adv. Mater. 25, 3915 (2013).

    Article  Google Scholar 

  16. M. Safdar, Z.X. Wang, M. Mirza, F.K. Butt, Y.J. Wang, L.F. Sun, and J. He, J. Mater. Chem. A 1, 1427 (2013).

    Article  Google Scholar 

  17. Z.L. Li, S.Q. Zheng, Y.Z. Zhang, R.Y. Teng, T. Huang, C.F. Chen, and G.W. Lu, J. Mater. Chem. A 1, 15046 (2013).

    Article  Google Scholar 

  18. G.Q. Zhang, X.L. Lu, W. Wang, and X.G. Li, Chem. Mater. 19, 5207 (2007).

    Article  Google Scholar 

  19. G.Q. Zhang, W. Wang, X.L. Lu, and X.G. Li, Cryst. Growth Des. 9, 145 (2009).

    Article  Google Scholar 

  20. Y. Zhang, L.P. Hu, T.J. Zhu, J. Xie, and X.B. Zhao, Cryst. Growth Des. 13, 645 (2013).

    Article  Google Scholar 

  21. Z.Y. Tang, Y. Wang, K. Sun, and N.A. Kotov, Adv. Mater. 17, 358 (2005).

    Article  Google Scholar 

  22. B. Zhang, W.Y. Hou, X.C. Ye, S.Q. Fu, and Y. Xie, Adv. Funct. Mater. 17, 486 (2007).

    Article  Google Scholar 

  23. Z.L. Li, S.Q. Zheng, T. Huang, Y.Z. Zhang, R.Y. Teng, and G.W. Lu, J. Alloys Compd. 617, 247 (2014).

    Article  Google Scholar 

  24. M.J. Kirkham, A.M. Santos, C.J. Rawn, E. Lara-Curzio, J.W. Sharp, and A.J. Thompson, Phys. Rev. B 85, 144120 (2012).

    Article  Google Scholar 

  25. H.Z. Zhao, J.H. Sui, Z.J. Tang, Y.C. Lan, Q. Jie, D. Kraemer, K. McEnaney, A. Guloy, G. Chen, and Z.F. Ren, Nano Energy 7, 97 (2014).

    Article  Google Scholar 

  26. Y. Lee, S.H. Lo, C.Q. Chen, H. Sun, D.Y. Chung, T.C. Chasapis, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Nat. Commun. 5, 3640 (2014).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 51171208 and 51271201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqi Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zheng, S., Zhang, Y. et al. High-Yield Synthesis, Controllable Evolution, and Thermoelectric Properties of Te/Bi2Te3 Heterostructure Nanostrings. J. Electron. Mater. 44, 2061–2067 (2015). https://doi.org/10.1007/s11664-015-3656-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3656-1

Keywords

Navigation