Skip to main content
Log in

Near-IR Photoluminescence of Pr/Cu/Sn Tridoped Phosphate Glass: Nonplasmonic Material System Versus Plasmonic Nanocomposite

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An optical spectroscopy study of Pr2O3, CuO, and SnO tridoped barium phosphate glass prepared by the melt-quenching technique has been carried out, emphasizing near-infrared (IR) emission properties. The material is studied in its nonplasmonic state (as synthesized) and plasmonic form (heat-treated), aiming to elucidate the effects of Cu nanoparticles. The data indicate that Cu+ ions and Sn centers are stabilized in the melt-quenched glass. Broad ultraviolet excitations of both species can lead to near-IR emission of Pr3+ ions via energy transfer. The plasmonic nanocomposite is produced upon heat treatment as Sn2+ reduces Cu+ to Cu0 atoms, ultimately precipitating as Cu nanoparticles sustaining the surface plasmon resonance. Consequently, depletion of primarily Cu+ modified the ultraviolet excitation properties for the sensitized near-IR Pr3+ emission. Further, suppression of the Pr3+ emission from near-IR emitting states 1D2 and 1G4 was observed in the Cu nanocomposite in accord with a “plasmonic diluent” role of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, Gv Plessen, and F. Lederer, Phys. Status Solidi A 205, 2844 (2008).

    Article  Google Scholar 

  2. H.A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).

    Article  Google Scholar 

  3. J.-C.G. Bünzili and S.V. Eliseeva, J. Rare Earths 28, 824 (2010).

    Article  Google Scholar 

  4. X. Huang, S. Han, W. Huang, and X. Liu, Chem. Soc. Rev. 42, 173 (2013).

    Article  Google Scholar 

  5. A.S. Kuznetsov, V.K. Tikhomirov, M.V. Shestakov, and V.V. Moshchalkov, Nanoscale 5, 10065 (2013).

    Article  Google Scholar 

  6. S. Chawla, N. Kumar, and H. Chander, J. Lumin. 129, 114 (2009).

    Article  Google Scholar 

  7. Y. Tong, J. Ren, Y. Liu, and G. Chen, J. Non-Cryst. Solids 358, 2961 (2012).

    Google Scholar 

  8. M.P. Belançon, J.D. Marconi, M.F. Ando, and L.C. Barbosa, Opt. Mater. 36, 1020 (2014).

    Article  Google Scholar 

  9. X. Han, L. Shen, E.Y.B. Pun, T. Ma, and H. Lin, Opt. Mater. 36, 1203 (2014).

    Article  Google Scholar 

  10. J.A. Jiménez, M. Sendova, and E.R. Fachini, Infrared Phys. Technol. 67, 359 (2014).

    Article  Google Scholar 

  11. W. Xu, Q. Yan, J. Ren, and G. Chen, J. Lumin. 134, 75 (2013).

    Article  Google Scholar 

  12. G. Lakshminarayana and J. Qiu, J. Alloys Compd. 478, 630 (2009).

    Article  Google Scholar 

  13. S. Zhuo, M. Shao, L. Cheng, R. Que, D.D.D. Ma, and S.T. Lee, Front. Optoelectron. China 4, 114 (2011).

    Article  Google Scholar 

  14. A.E. Mohammed-Osman, K.A.K. Lott, C.A. Hogarth, and M.A. Hassan, J. Mater. Sci. 23, 1098 (1988).

    Article  Google Scholar 

  15. A.E. Mohammed-Osman, M.A. Hassan, and C.A. Hogarth, J. Mater. Sci. 24, 3560 (1989).

    Article  Google Scholar 

  16. M. Isomura, K. Nakahata, M. Shima, S. Taira, K. Wakisaka, M. Tanaka, and S. Kiyama, Sol. Energy Mater. Sol. Cells 74, 519 (2002).

    Article  Google Scholar 

  17. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge: Cambridge University Press, 2000).

    Book  Google Scholar 

  18. J.A. Jiménez, M. Sendova, H. Liu, and F.E. Fernández, Plasmonics 6, 399 (2011).

    Article  Google Scholar 

  19. J.A. Jiménez, J. Mater. Sci. 49, 4387 (2014).

    Article  Google Scholar 

  20. J.A. Jiménez and J.B. Hockenbury, J. Mater. Sci. 48, 6921 (2013).

    Article  Google Scholar 

  21. J.A. Jiménez, Appl. Phys. A 114, 1369 (2014).

    Article  Google Scholar 

  22. J.A. Jiménez, J. Non-Cryst. Solids 387, 124 (2014).

    Article  Google Scholar 

  23. S. Gómez, I. Urra, R. Valiente, and F. Rodríguez, Sol. Energy Mater. Sol. Cells 95, 2018 (2011).

    Article  Google Scholar 

  24. H. Liu and F. Gan, J. Non-Cryst. Solids 80, 447 (1986).

    Article  Google Scholar 

  25. J.A. Jiménez and M. Sendova, J. Appl. Phys. 116, 033518 (2014).

    Article  Google Scholar 

  26. M.A. García, E. Borsella, S.E. Paje, J. Llopis, M.A. Villegas, and R. Polloni, J. Lumin. 93, 253 (2001).

    Article  Google Scholar 

  27. P.I. Paulose, G. Jose, V. Thomas, N.V. Unnikrishnan, and M.K.R. Warrier, J. Phys. Chem. Solids 64, 841 (2003).

    Article  Google Scholar 

  28. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A.J. Ikushima, T. Tokisaki, and A. Nakamura, J.␣Opt. Soc. Am. B 11, 1236 (1994).

    Article  Google Scholar 

  29. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Berlin: Springer, 1995).

    Book  Google Scholar 

  30. J.A. Jiménez, Phys. Chem. Chem. Phys. 15, 17587 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Jiménez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez, J.A., Sendova, M. Near-IR Photoluminescence of Pr/Cu/Sn Tridoped Phosphate Glass: Nonplasmonic Material System Versus Plasmonic Nanocomposite. J. Electron. Mater. 44, 1175–1180 (2015). https://doi.org/10.1007/s11664-015-3649-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3649-0

Keywords

Navigation