Abstract
We report for the first time charge-transfer complex formation at the interface of carminic acid and cadmium sulfide (CdS) nanoparticles. The complex formation was confirmed by ultraviolet–visible (UV–vis) and fluorescence emission spectroscopy. Cadmium sulfide nanoparticles were synthesized by the wet chemical method and characterized by UV–vis spectroscopy, x-ray diffraction and transmission electron microscopy. Carminic acid, in different concentrations, was chemisorbed on the surface of CdS nanoparticles. Grafting of carminic acid on CdS was confirmed by Fourier transform infrared spectroscopy. Energy levels of the highest occupied molecular orbitals and lowest unoccupied molecular orbitals (LUMO) of both carminic acid and CdS nanoparticles matched well for the injection of electron from LUMO of carminic acid to the conduction band of cadmium sulfide. The photoactive nanohybrid material was used in dye-sensitized solar cells. The efficiency of carminic acid functionalized CdS nanoparticles was found to be double the value obtained for the reference device and remained constant over a certain concentration range owing to the complex formation at the interface. However, raising the concentration of carminic acid beyond 2.5 × 10−5 M resulted in a decrease in efficiency. This was ascribed to charge recombination due to the presence of ungrafted carminic acid molecules.
This is a preview of subscription content, access via your institution.
References
K.E. Jasim, S. Al-Dallal, and A.M. Hassan, J. Nanotechnol. 2012, ID 167128 (2012).
M. Grätzel, J. Photochem. Photobiol. C 4, 145 (2003).
W.W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).
C. Nasr, S. Hotchandani, W.Y. Kim, R.H. Schmehl, and P.V. Kamat, J. Phys. Chem. B 101, 7480 (1997).
S.-C. Lin, Y.-L. Lee, C.-H. Chang, Y.-J. Shen, and Y.-M. Yang, Appl. Phys. Lett. 90, 143517 (2007).
S. Banerjee, S.K. Mohapatra, P.P. Das, and M. Misra, Chem. Mater. 20, 6784 (2008).
M.V. Garcia-Cuenc, J.L. Morenza, E. Bertran, and A. Lousa, J. Phys. D 20, 958 (1987).
A. Sanchez, P.J. Sebastain, and O. Gomez-Daza, Semicond. Sci. Technol. 10, 87 (1995).
W.F. Mohammed, J. Eng. Technol. 14, 34 (1995).
T. Aramoto, S. Kumazawa, H. Higuchi, T. Arita, S. Shibutani, T. Nishio, J. Nakajima, M. Tsuji, A. Hanafusa, T. Hibino, K. Omura, H. Ohyama, and M. Murozono, Jpn. J. App. Phys. 36, 6304 (1997).
W. Sang-aroon, S. Laopha, P. Chaiamornnugool, S. Tontapha, S. Saekow, and V. Amornkitbamrung, J. Mol. Model. 19, 1407 (2013).
J.A. Cracknell, K.A. Vincent, and F.A. Armstrong, Chem. Rev. 108, 2439 (2008).
S. Gaweda, G. Stochel, and K. Szaciłowski, J. Phys. Chem. C 112, 19131 (2008).
T.R. Heera and L. Cindrella, J. Mol. Model. 16, 523 (2010).
S.M. Shah, A. Kira, H. Imahori, D. Ferry, H. Brisset, F. Fages, and J. Ackermann, J. Colloid Interface Sci. 386, 268 (2012).
H. Imahori, N.V. Tkachenko, V. Vehmanen, K. Tamaki, H. Lemmetyinen, Y. Sakata, and S. Fukuzumi, J. Phys. Chem. A 105, 1750 (2001).
H. Imahori, M. Ueda, S. Kang, H. Hayashi, S. Hayashi, H. Kaji, S. Seki, A. Saeki, S. Tagawa, and T. Umeyama, Chem. Eur. J. 13, 10182 (2007).
G. Wang, Y. Wang, W. Chen, C. Liang, G. Li, and L. Zhang, Mater. Lett. 48, 269 (2001).
M. Molaei, M. Marandi, E. Saievar-Iranized, N. Taghavinia, B. Liu, H.D. Sun, and X.W. Sun, J. Lumin. 132, 467 (2012).
R. Rai and S. Sharma, Adv. Mat. Lett. 1, 269 (2010).
L. Warr and A. Rice, J. Metamorph. Geol. 12, 141 (1994).
V. Lev-Goldman, B. Mester, N. Ben-Aroya, T. Hanoch, B. Rupp, T. Stanoeva, G. Gescheidt, R. Seger, Y. Koch, and L. Weiner, Bioorg. Med. Chem. 16, 6789 (2008).
M. Borges, R. Tejera, L. Díaz, P. Esparza, and E. Ibáñez, Food Chem. 132, 1855 (2012).
L. Diaz-Flores, G. Luna-Barcenas, J. Gonazález-Hernández, and Y.V. Vorobiev, J. Sol Gel. Sci. Technol. 33, 261 (2005).
M.-C. Rosu, R.-C. Suciu, M. Mihet, and I. Bratu, Mater. Sci. Semiconduct. Process. 16, 1551 (2013).
Acknowledgement
We are very grateful to the Higher Education Commission of Pakistan for financial support under project No-20-/2329/NRPU/R&D/HEC/12 and Quaid-i-Azam University, Islamabad, for providing laboratory and space facilities.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shahzad, N., Shah, S.M., Munir, S. et al. Charge-Transfer Complexation at Carminic Acid–CdS Interface and Its Impact on the Efficiency of Dye-Sensitized Solar Cells. J. Electron. Mater. 44, 1167–1174 (2015). https://doi.org/10.1007/s11664-015-3648-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-015-3648-1
Keywords
- Carminic acid
- dye-sensitized solar cells
- chemisorption
- cadmium sulfide
- nanoparticles