Skip to main content

Charge-Transfer Complexation at Carminic Acid–CdS Interface and Its Impact on the Efficiency of Dye-Sensitized Solar Cells


We report for the first time charge-transfer complex formation at the interface of carminic acid and cadmium sulfide (CdS) nanoparticles. The complex formation was confirmed by ultraviolet–visible (UV–vis) and fluorescence emission spectroscopy. Cadmium sulfide nanoparticles were synthesized by the wet chemical method and characterized by UV–vis spectroscopy, x-ray diffraction and transmission electron microscopy. Carminic acid, in different concentrations, was chemisorbed on the surface of CdS nanoparticles. Grafting of carminic acid on CdS was confirmed by Fourier transform infrared spectroscopy. Energy levels of the highest occupied molecular orbitals and lowest unoccupied molecular orbitals (LUMO) of both carminic acid and CdS nanoparticles matched well for the injection of electron from LUMO of carminic acid to the conduction band of cadmium sulfide. The photoactive nanohybrid material was used in dye-sensitized solar cells. The efficiency of carminic acid functionalized CdS nanoparticles was found to be double the value obtained for the reference device and remained constant over a certain concentration range owing to the complex formation at the interface. However, raising the concentration of carminic acid beyond 2.5 × 10−5 M resulted in a decrease in efficiency. This was ascribed to charge recombination due to the presence of ungrafted carminic acid molecules.

This is a preview of subscription content, access via your institution.


  1. K.E. Jasim, S. Al-Dallal, and A.M. Hassan, J. Nanotechnol. 2012, ID 167128 (2012).

  2. M. Grätzel, J. Photochem. Photobiol. C 4, 145 (2003).

    Article  Google Scholar 

  3. W.W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).

    Article  Google Scholar 

  4. C. Nasr, S. Hotchandani, W.Y. Kim, R.H. Schmehl, and P.V. Kamat, J. Phys. Chem. B 101, 7480 (1997).

    Article  Google Scholar 

  5. S.-C. Lin, Y.-L. Lee, C.-H. Chang, Y.-J. Shen, and Y.-M. Yang, Appl. Phys. Lett. 90, 143517 (2007).

    Article  Google Scholar 

  6. S. Banerjee, S.K. Mohapatra, P.P. Das, and M. Misra, Chem. Mater. 20, 6784 (2008).

    Article  Google Scholar 

  7. M.V. Garcia-Cuenc, J.L. Morenza, E. Bertran, and A. Lousa, J. Phys. D 20, 958 (1987).

    Article  Google Scholar 

  8. A. Sanchez, P.J. Sebastain, and O. Gomez-Daza, Semicond. Sci. Technol. 10, 87 (1995).

    Article  Google Scholar 

  9. W.F. Mohammed, J. Eng. Technol. 14, 34 (1995).

    Google Scholar 

  10. T. Aramoto, S. Kumazawa, H. Higuchi, T. Arita, S. Shibutani, T. Nishio, J. Nakajima, M. Tsuji, A. Hanafusa, T. Hibino, K. Omura, H. Ohyama, and M. Murozono, Jpn. J. App. Phys. 36, 6304 (1997).

    Article  Google Scholar 

  11. W. Sang-aroon, S. Laopha, P. Chaiamornnugool, S. Tontapha, S. Saekow, and V. Amornkitbamrung, J. Mol. Model. 19, 1407 (2013).

    Article  Google Scholar 

  12. J.A. Cracknell, K.A. Vincent, and F.A. Armstrong, Chem. Rev. 108, 2439 (2008).

    Article  Google Scholar 

  13. S. Gaweda, G. Stochel, and K. Szaciłowski, J. Phys. Chem. C 112, 19131 (2008).

    Article  Google Scholar 

  14. T.R. Heera and L. Cindrella, J. Mol. Model. 16, 523 (2010).

    Article  Google Scholar 

  15. S.M. Shah, A. Kira, H. Imahori, D. Ferry, H. Brisset, F. Fages, and J. Ackermann, J. Colloid Interface Sci. 386, 268 (2012).

    Article  Google Scholar 

  16. H. Imahori, N.V. Tkachenko, V. Vehmanen, K. Tamaki, H. Lemmetyinen, Y. Sakata, and S. Fukuzumi, J. Phys. Chem. A 105, 1750 (2001).

    Article  Google Scholar 

  17. H. Imahori, M. Ueda, S. Kang, H. Hayashi, S. Hayashi, H. Kaji, S. Seki, A. Saeki, S. Tagawa, and T. Umeyama, Chem. Eur. J. 13, 10182 (2007).

    Article  Google Scholar 

  18. G. Wang, Y. Wang, W. Chen, C. Liang, G. Li, and L. Zhang, Mater. Lett. 48, 269 (2001).

    Article  Google Scholar 

  19. M. Molaei, M. Marandi, E. Saievar-Iranized, N. Taghavinia, B. Liu, H.D. Sun, and X.W. Sun, J. Lumin. 132, 467 (2012).

    Article  Google Scholar 

  20. R. Rai and S. Sharma, Adv. Mat. Lett. 1, 269 (2010).

    Article  Google Scholar 

  21. L. Warr and A. Rice, J. Metamorph. Geol. 12, 141 (1994).

    Article  Google Scholar 

  22. V. Lev-Goldman, B. Mester, N. Ben-Aroya, T. Hanoch, B. Rupp, T. Stanoeva, G. Gescheidt, R. Seger, Y. Koch, and L. Weiner, Bioorg. Med. Chem. 16, 6789 (2008).

    Article  Google Scholar 

  23. M. Borges, R. Tejera, L. Díaz, P. Esparza, and E. Ibáñez, Food Chem. 132, 1855 (2012).

    Article  Google Scholar 

  24. L. Diaz-Flores, G. Luna-Barcenas, J. Gonazález-Hernández, and Y.V. Vorobiev, J. Sol Gel. Sci. Technol. 33, 261 (2005).

    Article  Google Scholar 

  25. M.-C. Rosu, R.-C. Suciu, M. Mihet, and I. Bratu, Mater. Sci. Semiconduct. Process. 16, 1551 (2013).

    Article  Google Scholar 

Download references


We are very grateful to the Higher Education Commission of Pakistan for financial support under project No-20-/2329/NRPU/R&D/HEC/12 and Quaid-i-Azam University, Islamabad, for providing laboratory and space facilities.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Syed Mujtaba Shah.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahzad, N., Shah, S.M., Munir, S. et al. Charge-Transfer Complexation at Carminic Acid–CdS Interface and Its Impact on the Efficiency of Dye-Sensitized Solar Cells. J. Electron. Mater. 44, 1167–1174 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Carminic acid
  • dye-sensitized solar cells
  • chemisorption
  • cadmium sulfide
  • nanoparticles