Skip to main content
Log in

Effects of Nitrogen Flow Ratio on the Properties of Radiofrequency-Sputtered InGaN Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Indium gallium nitride (InGaN) thin films have been prepared on quartz glass substrates at various nitrogen flow ratios by radiofrequency (rf) reactive magnetron sputtering. At lower nitrogen flow ratio of 30%, the as-grown InGaN film exhibits an amorphous structure. As the nitrogen flow ratio increases from 40% to 60%, grazing-incidence x-ray diffraction (GIXRD) peaks corresponding to wurtzite InGaN are observed. At higher nitrogen flow ratios of 80% and 100%, the films exhibit highly oriented fine columnar structure and the texture of the wurtzite structure changes from (0002) to (\({10{\bar{\hbox{1}}}\hbox{3}}\)). The nitrogen flow ratio has a significant effect on the crystalline orientation and the intensity of the peak signals. A redshift of the absorption edge occurs, and the bandgap E g tends to decrease with increasing nitrogen flow ratio. The sheet resistance R s and the resistivity ρ of the InGaN films decrease due to the contribution of the comparatively narrow intercrystalline barriers. All the InGaN films have low mobility values, and show n-type conductivity with carrier concentration depending on the nitrogen flow ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).

  2. V.Y. Davydov, A.A. Klochikhin, V.V. Emtsev, D.A. Kurdyukov, S.V. Ivanov, V.A. Vekshin, F. Bechstedt, J. Furthmuller, J. Aderhold, J. Graul, A.V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E.E. Haller, Phys. Status Solidi B 234, 787 (2002).

    Article  Google Scholar 

  3. J. Wu, W. Walukiewicz, K.M. Yu, W. Shan, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, W.K. Metzger, and S. Kurtz, J. Appl. Phys. 94, 6477 (2003).

  4. T. Kuykendall, P. Ulrich, S. Aloni, and P.D. Yang, Nat. Mater. 6, 951 (2007).

    Article  Google Scholar 

  5. H. Hamzaoui, A.S. Bouazzi, and B. Rezig, Sol. Energy Mater. Sol. Cells 87, 595 (2005).

    Article  Google Scholar 

  6. W.V. der Stricht, I. Moerman, P. Demeester, J.A. Crawley, and E.J. Thrush, J. Cryst. Growth 170, 344 (1997).

    Article  Google Scholar 

  7. W. Shan, W. Walukiewicz, E.E. Haller, B.D. Little, J.J. Song, M.D. McCluskey, N.M. Johnson, Z.C. Feng, M. Schurman, and R.A. Stall, J. Appl. Phys. 84, 4452 (1998).

    Article  Google Scholar 

  8. S.R. Jian, T.H. Fang, and D.S. Chuu, Appl. Surf. Sci. 252, 3033 (2006).

    Article  Google Scholar 

  9. B.N. Pantha, J. Li, J.Y. Lin, and H.X. Jiang, Appl. Phys. Lett. 93, 182107 (2008).

    Article  Google Scholar 

  10. A. Koukitu, N. Takahashi, T. Taki, and H. Seki, J. Cryst. Growth 170, 306 (1997).

    Article  Google Scholar 

  11. H.P.D. Schenk, P. de Mierry, M. Laügt, F. Omnès, M. Leroux, B. Beaumont, and P. Gibart, Appl. Phys. Lett. 75, 2587 (1999).

    Article  Google Scholar 

  12. Y. Kangawa, K. Kakimoto, T. Ito, and A. Koukitu, J. Cryst. Growth 311, 463 (2009).

    Article  Google Scholar 

  13. V.P. Chaly, B.A. Borisov, D.M. Demidov, D.M. Krasovitsky, Y.V. Pogorelsky, A.P. Shkurko, I.A. Sokolov, and S.Yu. Karpov, J. Cryst. Growth 206, 147 (1999).

    Article  Google Scholar 

  14. R.R. Lieten, W.J. Tseng, K.M. Yu, W. van de Graaf, J.P. Locquet, J. Dekoster, and G. Borghs, CrystEngComm 15, 9121 (2013).

    Article  Google Scholar 

  15. J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, and W.J. Schaff, Appl. Phys. Lett. 80, 4741 (2002).

    Article  Google Scholar 

  16. T. Itoh, S. Hibino, T. Sahashi, Y. Kato, S. Koiso, F. Ohashi, and S. Nonomura, J. Non-Cryst. Solids 358, 2362 (2012).

    Article  Google Scholar 

  17. J. Wang, X.J. Shi, and J. Zhu, Appl. Surf. Sci. 265, 399 (2013).

    Article  Google Scholar 

  18. Q.X. Guo, T. Nakao, T. Ushijima, W.Z. Shi, F. Liu, K. Saito, T. Tanaka, and M. Nishio, J. Alloys Compd. 587, 217 (2014).

    Article  Google Scholar 

  19. A.G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94, 2779 (2003).

    Article  Google Scholar 

  20. Q.X. Guo, T. Tanaka, M. Nishio, and H. Ogawa, Jpn. J. Appl. Phys. 47, 612 (2008).

    Article  Google Scholar 

  21. H. He, Y. Cao, R. Fu, H. Wang, J. Huang, C. Huang, M. Wang, and Z. Deng, J. Mater. Sci.: Mater. Electron. 21, 676 (2010).

    Google Scholar 

  22. H. Okano, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, Jpn. J. Appl. Phys. 31, 3446 (1992).

    Article  Google Scholar 

  23. S. Cho, J. Cryst. Growth 326, 179 (2011).

    Article  Google Scholar 

  24. J. Ross and M. Rubin, Mater. Lett. 12, 215 (1991).

    Article  Google Scholar 

  25. Q.X. Guo, N. Shingai, Y. Mitsuishi, M. Nishio, and H. Ogawa, Thin Solid Films 343–344, 524 (1999).

    Article  Google Scholar 

  26. H. Shinoda and N. Mutsukura, Thin Solid Films 503, 8 (2006).

    Article  Google Scholar 

  27. C.K. Chung and T.S. Chen, J. Electrochem. Soc. 156, H119 (2009).

    Article  Google Scholar 

  28. S.R. Meher, K.P. Biju, and M.K. Jain, Appl. Surf. Sci. 258, 1744 (2011).

    Article  Google Scholar 

  29. M.H. Tsai, C.H. Lai, J.W. Yeh, and J.Y. Gan, J. Phys. D Appl. Phys. 41, 235402 (2008).

    Article  Google Scholar 

  30. J. Pelleg, L.Z. Zevin, S. Lungo, and N. Croitoru, Thin Solid Films 197, 117 (1991).

    Article  Google Scholar 

  31. J.E. Greene, J.E. Sundgren, L. Hultman, I. Petrov, and D.B. Bergstrom, Appl. Phys. Lett. 67, 2928 (1995).

    Article  Google Scholar 

  32. A. Dixit, C. Sudakar, R. Naik, G. Lawes, J.S. Thakur, E.F. McCullen, G.W. Auner, and V.M. Naik, Appl. Phys. Lett. 93, 142103 (2008).

    Article  Google Scholar 

  33. L. Cao, Z.L. Xie, B. Liu, X.Q. Xiu, R. Zhang, and Y.D. Zheng, J. Vac. Sci. Technol. B 25, 199 (2007).

    Article  Google Scholar 

  34. J.A. Bearden and A.F. Burr, Rev. Mod. Phys. 39, 125 (1967).

    Article  Google Scholar 

  35. M. Cardona and L. Ley, Photoemission in Solids 1: General Principles (Berlin: Springer-Verlag, 1978).

    Book  Google Scholar 

  36. F. Yakuphanoglu, M. Sekerci, and O.F. Ozturk, Opt. Commun. 239, 275 (2004).

    Article  Google Scholar 

  37. S.R. Meher, A. Subrahmanyam, and M.K. Jain, J. Mater. Sci. 48, 1196 (2013).

    Article  Google Scholar 

  38. G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Nat. Mater. 3, 458 (2004).

    Article  Google Scholar 

  39. R.L. Petritz, Phys. Rev. 104, 1508 (1956).

    Article  Google Scholar 

  40. Q.X. Guo, N. Shingai, M. Nishio, and H. Ogawa, J. Cryst. Growth 189–190, 466 (1998).

    Article  Google Scholar 

  41. R.A. Smith, Semiconductors (Cambridge: Cambridge University Press, 1959).

    Google Scholar 

  42. D.K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Hoboken, NJ: Wiley, 2006).

    Google Scholar 

  43. C. Stampfl, C.G. Van de Walle, D. Vogel, P. Krüger, and J. Pollmann, Phys. Rev. B 61, R7846 (2000).

    Article  Google Scholar 

  44. I. Shalish, Y. Shapira, L. Burstein, and J. Salzman, J. Appl. Phys. 89, 390 (2001).

    Article  Google Scholar 

  45. M.D. McCluskey, N.M. Johnson, C.G. Van de Walle, D.P. Bour, M. Kneissl, and W. Walukoewcz, Phys. Rev. Lett. 80, 4008 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Municipal Commission of Education through its sponsorship of the research under the Research Fund of co-construction Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Hou, X.H., Shi, X.J. et al. Effects of Nitrogen Flow Ratio on the Properties of Radiofrequency-Sputtered InGaN Films. J. Electron. Mater. 44, 1160–1166 (2015). https://doi.org/10.1007/s11664-015-3644-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3644-5

Keywords

Navigation