Skip to main content
Log in

Evaluation of Electroplated Co-P Film as Diffusion Barrier Between In-48Sn Solder and SiC-Dispersed Bi2Te3 Thermoelectric Material

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The diffusion barrier property of Co-P film as a buffer layer between SiC-dispersed Bi2Te3 bulk material and In-48Sn solder was investigated. A Co-P film with thickness of ~6 µm was electroplated on SiC-dispersed Bi2Te3 substrate, joined with In-48Sn solder by a reflow process, and annealed at 100°C for up to 625 h. The formation and growth kinetics of intermetallic compounds (IMCs) at the interface between the In-48Sn and substrate were studied using transmission electron microscopy and scanning electron microscopy with energy-dispersive x-ray spectroscopy. The results showed that crystalline Co(In,Sn)3 formed as an irregular layer adjacent to the solder side at the solder/Co-P interface due to diffusion of Co towards the solder, and a small amount of amorphous Co45P13In12Sn30 appeared at the Co-P side because of diffusion of In and Sn into Co-P. The growth of Co(In,Sn)3 and Co45P13In12Sn30 during solid-state aging was slow, being controlled by interfacial reaction and diffusion, respectively. For comparison, In-48Sn/Bi2Te3-SiC joints were prepared and the IMCs in the joints analyzed. Without a diffusion barrier, In penetrated rapidly into the substrate, which led to the formation of amorphous In x Bi y phase in crystalline In4Te3 matrix. These IMCs grew quickly with prolongation of the annealing time, and their growth was governed by volume diffusion of elements. The experimental data demonstrate that electroplated Co-P film is an effective diffusion barrier for use in Bi2Te3-based thermoelectric modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mizoshiri, M. Mikami, K. Ozaki, and K. Kobayashi, J. Electron. Mater. 41, 1713 (2012).

    Article  Google Scholar 

  2. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  3. G.J. Snyder, J.R. Lim, C.K. Huang, and J.P. Fleurial, Nat. Mater. 2, 528 (2003).

    Article  Google Scholar 

  4. L.M. Goncalves, C. Couto, P. Alpuim, and J.H. Correia, J. Micromech. Microeng. 18, 064008 (2008).

    Article  Google Scholar 

  5. I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, Nat. Nanotech. 4, 235 (2008).

    Article  Google Scholar 

  6. D. Xu, B. Xiong, and Y. Wang, Smart Mater. Struct. 20, 015013 (2011).

    Article  Google Scholar 

  7. Y. Zhou, L.L. Li, Q. Tan, and J.F. Li, J. Alloys Compd. 590, 362 (2014).

    Article  Google Scholar 

  8. D. Li, L. Li, D.W. Liu, and J.F. Li, Phys. Status Solidi RRL 6, 268 (2012).

    Article  Google Scholar 

  9. Z. Wang, V. Leonov, P. Fiorini, and C. Van Hoof, Sens. Actuators A 156, 95 (2009).

    Article  Google Scholar 

  10. R. Funahashi, M. Mikami, T. Mihara, S. Urata, and N. Ando, J. Appl. Phys. 99, 066117 (2006).

    Article  Google Scholar 

  11. D.W. Liu, J.F. Li, C. Chen, B.P. Zhang, and L.L. Li, J. Micromech. Microeng. 20, 125031 (2010).

    Article  Google Scholar 

  12. L.W. Da Silva and M. Kaviany, Int. J. Heat Mass. Transf. 47, 2417 (2004).

    Article  Google Scholar 

  13. G. Min and D.M. Rowe, Energy Convers. Manag. 41, 163 (2000).

    Article  Google Scholar 

  14. A.M. Pettes, R. Melamud, S. Higuchi, and K.E. Goodson, Proceedings of the 26th International Conference on Thermoelectrics, Jeju Island, South Korea (2007), p. 283.

  15. M.T. Barako, W. Park, A.M. Marconnet, M. Asheghi, and K.E. Goodson, J. Electron. Mater. 42, 372 (2013).

    Article  Google Scholar 

  16. R.P. Gupta, K. Xiong, J.B. White, K. Cho, H.N. Alshareef, and B.E. Gnade, J. Electrochem. Soc. 157, H666 (2010).

    Article  Google Scholar 

  17. K. Xiong, W. Wang, H.N. Alshareef, R.P. Gupta, J.B. White, B.E. Gnade, and K. Cho, J. Phys. D Appl. Phys. 43, 115303 (2010).

    Article  Google Scholar 

  18. C.L. Yang, H.J. Lai, J.D. Hwang, and T.H. Chuang, J. Electron. Mater. 42, 359 (2013).

    Article  Google Scholar 

  19. W.P. Lin, D.E. Wesolowski, and C.C. Lee, J. Mater. Sci.: Mater. Electron. 22, 1313 (2011).

    Google Scholar 

  20. R.P. Gupta, O.D. Iyore, K. Xiong, J.B. White, K. Cho, H.N. Alshareef, and B.E. Gnade, Electrochem. Solid-State Lett. 12, H395 (2009).

    Article  Google Scholar 

  21. T. Kacsich, E. Kolawa, J.P. Fleurial, T. Caillat, and M.A. Nicolet, J. Phys. D Appl. Phys. 31, 2406 (1998).

    Article  Google Scholar 

  22. N.H. Bae, S. Han, K.E. Lee, B. Kim, and S.T. Kim, Curr. Appl. Phys. 11, S40 (2011).

    Article  Google Scholar 

  23. O.D. Iyore, T.H. Lee, R.P. Gupta, J.B. White, H.N. Alshareef, M.J. Kim, and B.E. Gnade, Surf. Interface Anal. 41, 440 (2009).

    Article  Google Scholar 

  24. R. Zybała, K.T. Wojciechowski, M. Schmidt, and R. Mania, Materiały Ceramiczne/Ceram. Mater. 62, 481 (2010).

    Google Scholar 

  25. T.Y. Lin, C.N. Liao, and A.T. Wu, J. Electron. Mater. 41, 153 (2012).

    Article  Google Scholar 

  26. H.H. Hsu, C.H. Cheng, Y.L. Lin, S.H. Chiou, C.H. Huang, and C.P. Cheng, Appl. Phys. Lett. 103, 053902 (2013).

    Article  Google Scholar 

  27. S.P. Feng, Y.H. Chang, J. Yang, B. Poudel, B. Yu, Z. Ren, and G. Chen, Phys. Chem. Chem. Phys. 15, 6757 (2013).

    Article  Google Scholar 

  28. N.D. Lu, D.H. Yang, and L.L. Li, Acta Mater. 61, 4581 (2013).

    Article  Google Scholar 

  29. H. Ono, T. Nakano, and T. Ohta, Appl. Phys. Lett. 64, 1511 (1994).

    Article  Google Scholar 

  30. T.N. Arunagiri, Y. Zhang, O. Chyan, M. EI-Bouanani, M.J. Kim, K.H. Chen, C.T. Wu, and L.C. Chen, Appl. Phys. Lett. 86, 083104 (2005).

    Article  Google Scholar 

  31. D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995).

    Book  Google Scholar 

  32. Y.C. Lan, D.Z. Wang, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 92, 101910 (2008).

    Article  Google Scholar 

  33. C.Y. Ko and A.T. Wu, J. Electron. Mater. 41, 3320 (2012).

    Article  Google Scholar 

  34. Y.C. Lin and J.G. Duh, J. Alloys Compd. 439, 74 (2006).

    Article  Google Scholar 

  35. N. Lu, Y. Li, J. Cai, and L. Li, IEEE Trans. Magn. 47, 3799 (2011).

    Article  Google Scholar 

  36. N. Lu, J. Cai, and L. Li, Surf. Coat. Technol. 206, 4822 (2012).

    Article  Google Scholar 

  37. L. Shen, F. Guo, N. Zheng, and R. Zhao, Proceedings of 13th International Conference on Electronic Packaging Technology and High Density Packaging, Guilin, China (2012), p. 1578.

  38. C.N. Liao, C.H. Lee, and W.J. Chen, Electrochem. Solid-State Lett. 10, 23 (2007).

    Article  Google Scholar 

  39. W.P. Lin and C.C. Lee, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1311 (2011).

    Article  Google Scholar 

  40. S.W. Chen, C.H. Wang, S.K. Lin, and C.N. Chiu, J. Mater. Sci.: Mater. Electron. 18, 19 (2007).

    Google Scholar 

  41. L.D. Zhao, B.P. Zhang, J.F. Li, M. Zhou, W.S. Liu, and J. Liu, J. Alloys Compd. 455, 259 (2008).

    Article  Google Scholar 

  42. H. Schmalzried, Chemical Kinetics of Solids, VCH (2008).

  43. J. Koo and S. Jung, J. Electron. Mater. 34, 1565 (2005).

    Article  Google Scholar 

  44. J. Koo and S. Jung, Mater. Sci. Eng. A 397, 145 (2005).

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (Grant No. 2013CB632504) and the National Natural Science Foundation of China (Grant No. 51102149). We thank Prof. Jing-Feng Li for help with synthesis of SiC-dispersed Bi2Te3 material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangliang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Yang, D., Tan, Q. et al. Evaluation of Electroplated Co-P Film as Diffusion Barrier Between In-48Sn Solder and SiC-Dispersed Bi2Te3 Thermoelectric Material. J. Electron. Mater. 44, 2007–2014 (2015). https://doi.org/10.1007/s11664-015-3642-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3642-7

Keywords

Navigation