Advertisement

Journal of Electronic Materials

, Volume 44, Issue 5, pp 1367–1376 | Cite as

Novel Materials with Effective Super Dielectric Constants for Energy Storage

  • Francisco Javier Quintero Cortes
  • Jonathan PhillipsEmail author
Article

Abstract

To test a theory of the recently discovered phenomenon of super dielectric behavior at very low frequency, the dielectric constants of several ‘pastes’, composed of porous alumina powders filled to the point of incipient wetness with water containing dissolved sodium chloride, were measured. The effective dielectric low frequency constants of some of the pastes were greater than 1010, dramatically higher than that of any material ever reported. Moreover, the total energy density reported for one capacitor generated with NaCl-based super dielectric material is marginally higher than found in any prior report. These results are consistent with this recently postulated model of low frequency super dielectric behavior in porous, non-conductive materials saturated with ion-containing liquids: upon the application of an electric field, ions dissolved in the saturating liquid contained in the pores will travel to the ends of pore-filling liquid droplets creating giant dipoles. The fields of these giant dipoles oppose the applied field, reducing the net field created per unit of charge on the capacitor plates, effectively increasing charge/voltage ratio, hence capacitance. This is simply a version of the theory of ‘polarizable media’ found in most classic texts on electromagnetism. Other observations reported here include (1) the impact of ion concentration on dielectric values, (2) a maximum voltage similar to that associated with the electrical breakdown of water, (3) the loss of capacitance upon drying, (4) the recovery of capacitance upon the addition of water to a dry super dielectric material, and (5) the linear relationship between capacitance and inverse thickness. All observations are consistent with the earlier proposed model of the super dielectric phenomenon. An extrapolation of results suggests this technology can lead to energy density greater than the best lithium-ion battery.

Keywords

Dielectric capacitors energy storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Fromille and J. Phillips, Materials 7, 8197 (2014).CrossRefGoogle Scholar
  2. 2.
    S. Fromille and J. Phillips, Superdielectric Materials, arXiv:1403.6862, (2014).Google Scholar
  3. 3.
    J.D. Jackson, Classical Electrodynamics, 2nd ed. (New York: Wiley, 1975).Google Scholar
  4. 4.
    C.G. Liu, M. Liu, F. Li, and H.M. Cheng, App. Phys. Lett. 92, 143108 (2008).CrossRefGoogle Scholar
  5. 5.
    H. Gualous, D. Bouquain, A. Berthon, and J.M. Kauffmann, J. Power Sources 123, 86 (2003).CrossRefGoogle Scholar
  6. 6.
    G.J. Reynolds, M. Krutzer, M. Dubs, H. Felzer, and R. Mamazza, Materials 5, 644 (2012).CrossRefGoogle Scholar
  7. 7.
    E. Barsoukov and J. Ross MacDonald, Impedance Spectroscopy Theory, Experimental and Applications, 2nd ed. (New York: Wiley, 2005), p. 4.CrossRefGoogle Scholar
  8. 8.
    I.D. Raistrick, D. Franceschetti, and J. Ross MacDonald, Impedance Spectroscopy.Emphasizing Solid Materials and Systems, ed. J. Ross Macdonald (New York: Wiley, 1987), p. 27.Google Scholar
  9. 9.
    R. Waser and O. Lohse, Science and Technology of Integrated Ferroelectrics: Selected Papers from 11 years of the International Symposium on Integrated Ferroelectrics, ed. C.P. de Aranjo, R. Ramedi, and G.W. Taylor, (CRC Press, 2001) pp. 501.Google Scholar
  10. 10.
    Personal Communication. Prof. Yun Liu, College of Physical and Mathematical Sciences, Australia National University, Canberra Australia.(Values based on impedance spectroscopic investigation of capacitors generated according to the authors specification and using author supplied material).Google Scholar
  11. 11.
    J. Phillips, B. Clausen, and J.A. Dumesic, J. Phys. Chem. 84, 1814 (1980).CrossRefGoogle Scholar
  12. 12.
    J. Phillips and J.A. Dumesic, Appl. Surf. Sci. 7, 215 (1981).CrossRefGoogle Scholar
  13. 13.
    P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, and A. Loidl, Phys. Rev. B 70, 172102 (2004).CrossRefGoogle Scholar
  14. 14.
    K. Kinoshita and A. Yamaji, J. Appl. Phys. 47, 371 (1976).CrossRefGoogle Scholar
  15. 15.
    G. Arlt, D. Hennings, and G. de With, J. Appl. Phys. 58, 1619 (1985).CrossRefGoogle Scholar
  16. 16.
    J.C. Burfoot and G.W. Taylor, Polar Dielectrics and Their Applications (Berkeley: University of California Press, 1979), pp. 359–397.Google Scholar
  17. 17.
    F. El Kamel and P. Gonon, J. Electrochem. Soc. 157, G91 (2010).CrossRefGoogle Scholar
  18. 18.
    M. Maglione, C. Elissalde, and U.-C. Chung, Proc. SPIE 7603, 76030U (2010).CrossRefGoogle Scholar
  19. 19.
    C. Pecharroman, F. Esteban-Betegon, F. Bartolome, J.F. Lopez-Esteban, and J. Moya, Adv. Mat. 13, 1541 (2001).CrossRefGoogle Scholar
  20. 20.
    C. Pecharroman, F. Esteban-Betegon, and R. Jimenez, Ferroelectrics 400, 81 (2010).CrossRefGoogle Scholar
  21. 21.
    S.K. Saha, Phys. Rev. B 69, 125416 (2004).CrossRefGoogle Scholar
  22. 22.
    M. Valant, A. Dakskobler, M. Ambrozic, and T. Kosmac, J. Eur. Cer. Soc 26, 891 (2006).CrossRefGoogle Scholar
  23. 23.
    I.P. Gor’kov and G.M. Eliashberg, Zh. Eksp. Teor. Fiz. 48, 1407 (1965) [Soviet Physics JETP 21, 940 (1965)].Google Scholar
  24. 24.
    D.J. Bergman and Y. Imry, Phys. Rev. Lett. 39, 1222 (1977).CrossRefGoogle Scholar
  25. 25.
    A.L. Efros and B.I. Shklovskii, Phys. Stat. Sol. B 76, 475 (1976).CrossRefGoogle Scholar
  26. 26.
    A.L. Efros, Phys. Rev. B 84, 155134 (2011).CrossRefGoogle Scholar
  27. 27.
    D.L. Gerenrot, L. Berlyand, and J. Phillips, IEEE Trans. Adv. Packag. 26, 410 (2003).CrossRefGoogle Scholar
  28. 28.
    A.A. Samara, W.F. Hammetter, and E.L. Venturini, Phys. Rev. B 41, 8974 (1990).CrossRefGoogle Scholar
  29. 29.
    C.M. Rey, H. Mathias, L.R. Testardi, and S. Skirius, Phys. Rev. B 45, 10639 (1992).CrossRefGoogle Scholar
  30. 30.
    Y. Yang, X. Wang, and B. Liu, J. Mat. Sci. 25, 146 (2014).Google Scholar
  31. 31.
    P. Lunkenheimer, S. Krohns, S. Riegg, S.G. Ebbinghaus, A. Reller, and A. Loidl, Eur. Phys. J. 180, 61 (2009).Google Scholar
  32. 32.
    P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, and A. Lodl, Phys. Rev. B 66, 052105 (2002).CrossRefGoogle Scholar
  33. 33.
    H.M. Jones and E.E. Kunhards, IEEE Trans. DEI 1, 1016 (1994).CrossRefGoogle Scholar
  34. 34.
    Y. Toriyama and U. Shinohara, Phys. Rev. 51, 680 (1937).CrossRefGoogle Scholar
  35. 35.
    T. Christen and M.W. Carlen, J. Power Sources 91, 210 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society (outside the USA) 2015

Authors and Affiliations

  • Francisco Javier Quintero Cortes
    • 1
  • Jonathan Phillips
    • 2
    Email author
  1. 1.Department of Chemical EngineeringUniversity of ColombiaBogotáColombia
  2. 2.Naval Postgraduate SchoolMontereyUSA

Personalised recommendations