Advertisement

Journal of Electronic Materials

, Volume 44, Issue 6, pp 1984–1997 | Cite as

Thermoelectric Exhaust Heat Recovery with Heat Pipe-Based Thermal Control

  • F. P. BritoEmail author
  • Jorge Martins
  • Esra Hançer
  • Nuno Antunes
  • L. M. Gonçalves
Article

Abstract

Heat pipe (HP)-based heat exchangers can be used for very low resistance heat transfer between a hot and a cold source. Their operating temperature depends solely on the boiling point of their working fluid, so it is possible to control the heat transfer temperature if the pressure of the HP can be adjusted. This is the case of the variable conductance HPs (VCHP). This solution makes VCHPs ideal for the passive control of thermoelectric generator (TEG) temperature levels. The present work assesses, both theoretically and experimentally, the merit of the aforementioned approach. A thermal and electrical model of a TEG with VCHP assist is proposed. Experimental results obtained with a proof of concept prototype attached to a small single-cylinder engine are presented and used to validate the model. It was found that the HP heat exchanger indeed enables the TEG to operate at a constant, optimal temperature in a passive and safe way, and with a minimal overall thermal resistance, under part load, it effectively reduces the active module area without deprecating the temperature level of the active modules.

Keywords

Thermoelectric generator exhaust heat recovery TEG modelling heat pipes thermal management heat exchangers 

List of symbols

Abbreviations

1D

One-dimensional

3D

Three-dimensional

EREV

Range extended electric vehicle

HEV

Hybrid electric vehicle

HP

Heat pipe

IC

Internal combustion

ORC

Organic rankine cycle

TE

Thermoelectric

TEG

Thermoelectric generator

VCHP

Variable conductance heat pipe

Variables

cp

Specific heat at constant pressure (J kg−1 K−1)

g

Acceleration of gravity (m s−2)

hc

Contact heat transfer coefficient (W m−2 K−1)

HL

Enthalpy of vaporisation (J kg−1)

I

Electric current (A)

k

Thermal conductivity (W m−1 K−1)

kl

Thermal conductivity of liquid (W m−1 K−1)

Lc

Active length of the condenser (m)

\({\dot{m}}\)

Mass flow rate (kg s−1)

Npairs

Number of (P–N) pairs in a thermoelectric module

nteg

Number of thermoelectric modules

Pmax

Electrical output power at matched load (W)

\({\dot{Q}}\)

Thermal power (W)

\({\dot{q}}\)

Thermal power generated per unit volume (W m−3)

R

Thermal resistance (K W−1)

\({Ri_{{{\rm{total}}_{{{\rm{system}}_{\rm{e}} }} }}}\)

Total electrical resistance of the module (Ω)

S

Shape factor (m−1)

T

Temperature (K)

Ts

Saturation temperature of the working fluid

Tcond_w

Temperature of the condenser wall

Vo

Open circuit voltage (V)

α

Seebeck coefficient (V K−1)

η

Effectiveness of heat exchanger

μl

Dynamic viscosity of the liquid (Pa s)

ρ

Electrical resistivity (Ω m)

ρc

Contact resistivity (Ω m2)

ρl

Density of the liquid (kg m−3)

Subscripts

BiTe

Thermoelectric material/legs

cold

Cold side of the thermoelectric generator

coolant

Liquid for cooling the cold face of TEG

downstream

Downstream of the module (in terms of heat flux direction)

e

Electric

evap

Evaporator (sector1)

exh

Exhaust gases

hot

Hot side of the thermoelectric generator

hot junction

Corresponding to the power leaving the hot junction

HP

Heat pipe

in

At the inlet

Joule total

Total Joule power generated within all the legs

l

Liquid

out

At the outlet

Peltier

By Peltier effect

Sector1

Evaporator region

Sector2

Condenser region (including coolant system)

TEG

Thermoelectric generator module

total

Corresponding to all legs, not just one leg

upstream

Upstream of the module (in terms of heat flux direction)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Project ThinHarvest (FCOMP-01-0124-FEDER-041343/EXPL/EMS-ENE/1023/2013) and post doctoral grant SFRH/BPD/89553/2012, financed by FEDER funds through Programa Operacional Fatores de Competitividade—COMPETE and National funds through PIDDAC and FCT—Fundação para a Ciência e a Tecnologia; Luso-American Foundation/National Science Foundation (FLAD/NSF) 2013 PORTUGAL—U.S. Research Networks Program, Project “Waste Exhaust Energy Recovery of Internal Combustion Engines”.

References

  1. 1.
    A.E. Atabania, I.A. Badruddina, S. Mekhilefc, and A.S. Silitonga, Renew. Sust. Energy Rev. 15, 4586–4610 (2011).CrossRefGoogle Scholar
  2. 2.
    B. Ribeiro and J. Martins, SAE Tech. Pap. Ser. No. 2007-01-0261 (SAE Int’l, Warrendale, 2007).Google Scholar
  3. 3.
    J.J.G. Martins, K. Uzuneanu, B. Ribeiro, and O. Jasansky, SAE Tech. Pap. Ser. No. 2004-01-0617, Modeling of Spark Ignition Engines (SAE Int’l, Warrendale, 2004).Google Scholar
  4. 4.
    J. Pinto, T. Costa, J. Martins, and F.P. Brito, New Trends in Mechanism and Machine Science: From Fundamentals to Industrial Applications (New York: Springer, 2014), pp. 221–232.Google Scholar
  5. 5.
    M. Mori, T. Yamagami, M. Sorazawa, T. Miyabe, S. Takahashi, and T. Haraguchi, SAE Tech. Pap. Ser. No. 2011-01-1335 (SAE Int’l, Warrendale, 2011).Google Scholar
  6. 6.
    J. Martins and F.P. Brito, Carros Elétricos (Porto: Publindústria, 2012).Google Scholar
  7. 7.
    J. Martins, Motores de Combustão Interna, 4th ed. (Porto: Publindústria, 2013).Google Scholar
  8. 8.
    J. Heywood, Internal Combustion Engine Fundamentals (New York: McGraw Hill, 1988).Google Scholar
  9. 9.
    J. Ribau, C. Silva, F.P. Brito, and J. Martins, Energy Convers. Manag. 58, 120–133 (2012).CrossRefGoogle Scholar
  10. 10.
    L. Bell, Science 321, 1457–1461 (2008).CrossRefGoogle Scholar
  11. 11.
    D.M. Rowe and G. Min, IEE Proc. A 143, 351 (1996).Google Scholar
  12. 12.
    T.C. Hung, T.Y. Shai, and S.K. Wang, Energy 22, 661–667 (1997).CrossRefGoogle Scholar
  13. 13.
    P. Pichanusakorn and P. Bandaru, Mater. Sci. Eng. R 67, 19–63 (2010).CrossRefGoogle Scholar
  14. 14.
    C.B. Vining, Nat. Mater. 8, 83–85 (2009).CrossRefGoogle Scholar
  15. 15.
    G. Min and D.M. Rowe, IEEE T. Energy Convers. 22, 528–534 (2007).CrossRefGoogle Scholar
  16. 16.
    J.P. Carmo, J. Antunes, M.F. Silva, J.F. Ribeiro, L.M. Goncalves, and J.H. Correia, Measurement 44, 2194–2199 (2011).CrossRefGoogle Scholar
  17. 17.
    J. Yang and F.R. Stabler, J. Electron. Mater. 38, 1245–1251 (2009).CrossRefGoogle Scholar
  18. 18.
    J.P. Carmo, L.M. Goncalves, R.F. Wolffenbuttel, and J.H. Correia, Sensor Actuators A 161, 204 (2010).CrossRefGoogle Scholar
  19. 19.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, and R.G. Yang, et al., Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  20. 20.
    F.P. Brito, J. Martins, L.M. Goncalves, N. Antunes, and D. Sousa, SAE Int. J. Passeng. Cars Mech. Syst. 6, 2 (2013).Google Scholar
  21. 21.
    F.P. Brito, J. Martins, R. Sousa, and L.M. Gonçalves, SAE Int. J. Passeng. Cars Electron. Electr. Syst 5, 561–571 (2012).CrossRefGoogle Scholar
  22. 22.
    D. Reay and P. Kew, Heat Pipes: Theory, Design and Applications, 5th ed. (Butterworth-Heinemann Elsevier, New York, 2006), Chapter: Variable conductance heat pipes, pp. 215–218; Chapter: Theoretical background: Heat transfer in the condenser, p. 81; Chapter: Heat transfer and fluid flow theory, pp. 66–67.Google Scholar
  23. 23.
    J. Martins, F.P. Brito, L.M. Goncalves, and J. Antunes, SAE Tech. Pap. Ser. No. 2011-01-0315, (SAE Int’l, Warrendale, 2011).Google Scholar
  24. 24.
    F.P. Brito, J. Martins, L.M. Goncalves, and R. Sousa, 37th IEEE Conference on Industrial Electronics Society (IECON 2011), November 7–10, Melbourne, Australia (IEEE Xplore, 2011).Google Scholar
  25. 25.
    A. Zukauskas, Advances Heat Transfer, Vol. 8, ed. J.P. Hartnett and T.F. Irvine (New York: Academic, 1972)Google Scholar
  26. 26.
    F.P. Incropera and D.P. deWitt, Fundamentals of Heat and Mass Transfer, 3rd ed. (Wiley, New York, 1990), Chapter 1—Introduction, p. 4; Chapter 3.5—Conduction with thermal energy generation, pp. 108–110; Chapter 3.6 Heat transfer from extended surfaces, p. 133; Chapter 4.3.3: The conduction shape factor, p. 180; Chapter 8.4.2—The entry region, pp. 494–495.Google Scholar
  27. 27.
    B. Snaith, P.W. O’Callaghan, and S.D. Probert, Appl. Energy 16, 175–191 (1984).CrossRefGoogle Scholar
  28. 28.
    G.P. Peterson and L.S. Fletcher, Proceedings of the International Symposium on CoolingTechnology for Electronic Equipment (Honolulu, 1987), pp. 438–448.Google Scholar
  29. 29.
    M.M. Yovanovich, Heat Transfer—1986, Vol. 1, ed. C.L. Tien, V.P. Carey, and J.K. Ferrel (New York: Hemisphere, 1986), Google Scholar
  30. 30.
    E. Fried, Thermal Conductivity, Vol. 2, ed. R.P. Tye (London: Academic, 1969), Google Scholar
  31. 31.
    D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (New York: CRC, 2005), pp. 1-1–1-14.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • F. P. Brito
    • 1
    Email author
  • Jorge Martins
    • 1
  • Esra Hançer
    • 2
  • Nuno Antunes
    • 1
  • L. M. Gonçalves
    • 1
  1. 1.Universidade do MinhoGuimarãesPortugal
  2. 2.Erciyes UniversityKayseriTurkey

Personalised recommendations