Skip to main content
Log in

Hall Coefficient Determination and Electrical Properties of Chemical Bath-Deposited n-WO3 Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanocrystalline and porous chemical bath-deposited n-WO3 thin films at low temperature (318 K) are reported. The high-quality and well-reproducible films have been fabricated by acidic hydrolysis of tungstate ion followed by thermal annealing at 573 K for 1 h. X-ray diffraction analyses of the deposited WO3 films revealed that they were amorphous. However, an amorphous-to-crystalline transition with monoclinic phase was observed. Atomic force microscopy (AFM) analyses revealed a homogenous but irregular cluster of faceted spherically-shaped grains with pores. Scanning electron microscopy corroborated the AFM results. The optical absorption analysis of WO3 film showed that direct optical transition exists in the photon energy range 3.00–4.00 eV with bandgap of 3.70 eV. The refractive index developed peak at 315 nm in the dispersion region while the high frequency dielectric constant ɛ , and the carrier concentration to effective mass ratio, N/m*, were found to be 1.37 and 1.45 × 1039 cm−3, respectively. The temperature dependence of the electrical resistivity of the deposited films follows the semiconductor behavior with thermal activation energy of 2.0 meV, while the Hall coefficient R H was determined to be 0.17 cm3/A s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Rao, J. Non-Oxide Glasses 5, 1 (2013).

    Google Scholar 

  2. Y. Du, M. Gu, T. Varga, C. Wang, M.E. Bowden, and S.A. Chambers, ACS Appl. Mater. Interfaces 6, 14253 (2014).

    Article  Google Scholar 

  3. O. Lavi, G.L. Frey, A. Siegmann, and Y. Ein-Eli, Electrochem. Commun. 10, 1210 (2008).

    Article  Google Scholar 

  4. C.G. Granqvist, E. Avendano, and A. Azens, Thin Solid Films 442, 201 (2003).

    Article  Google Scholar 

  5. G.L. Frey, A. Rothschild, J. Sloan, R. Rosentsveig, R. Popvitz-Biro, and R. Tenne, J. Solid Chem. 162, 300 (2001).

    Article  Google Scholar 

  6. C.G. Grangvist, Sol. Energy Mater. Sol. Cells 60, 201 (2000).

    Article  Google Scholar 

  7. A. Tocchetto and A. Glisenti, Langmuir 16, 6173 (2000).

    Article  Google Scholar 

  8. S. Pokhrel, C.E. Simion, V.S. Teodorescu, N. Barsan, and U. Weimar, Adv. Funct. Mater. 19, 1767 (2009).

    Article  Google Scholar 

  9. T.J. Richardson, J.L. Slack, R.D. Armitage, R. Kostecki, B. Farangis, and M.D. Rubin, Appl. Phys. Lett. 78, 3047 (2001).

    Article  Google Scholar 

  10. A. Ghicov, S.P. Albu, J.M. Macak, and P. Schmuki, Small 4, 1063 (2008).

    Article  Google Scholar 

  11. C.M. Lampert, Sol. Energy Mater. Sol. Cell 52, 207 (1998).

    Article  Google Scholar 

  12. S.K. Deb, Sol. Energy Mater. Sol. Cell 25, 327 (1992).

    Article  Google Scholar 

  13. M. Nagasu and N. Koshida, Appl. Phys. Lett. 57, 1324 (1990).

    Article  Google Scholar 

  14. M. Green, W.C. Smith, and J.A. Weiner, Thin Solid Films 38, 89 (1976).

    Article  Google Scholar 

  15. B. Forslund, J. Chem. Educ. 74, 8 (1997).

    Article  Google Scholar 

  16. R. Reisfeld, Smart Optical Materials by Sol–Gel Method, www.solgel.com/articles/Sept01/ren_elc.htm.

  17. T. Yang, Z. Lin, and M. Wong, Appl. Surf. Sci. 252, 2029 (2005).

    Article  Google Scholar 

  18. S.K. Komornicki, M. Radecka, and P. Sobas, J. Mater. Sci. 15, 524 (2004).

    Google Scholar 

  19. L.M. Di Giulio, D. Manno, G. Micocci, A. Serra, and A. Tepore, J. Mater. Sci. 9, 317 (1998).

    Google Scholar 

  20. S.A. Agnihotry, Sol. Energy Mater. Sol. Cells 90, 15 (2006).

    Article  Google Scholar 

  21. P.S. Patil, S.H. Mujawar, A.I. Inamdar, P.S. Shinde, H.P. Deshmukh, and S.B. Sadale, Appl. Surf. Sci. 252, 1643 (2005).

    Article  Google Scholar 

  22. C.O. Avellaneda and L.O.S. Bulhoes, Sol. Energy Mater. Sol. Cells 90, 395 (2006).

    Article  Google Scholar 

  23. A.K. Srivastava, M. Deepa, S. Singh, R. Kishore, and S.A. Agnihotry, Appl. Surf. Sci. 252, 1568 (2005).

    Article  Google Scholar 

  24. R. Vijayalakshmi, M. Jayachandran, and C. Sanjeeviraja, Curr. Appl. Phys. 3, 171 (2003).

    Article  Google Scholar 

  25. S.H. Baeck, T.F. Jaramillo, C. Brandli, and E.W. McFarland, J. Comb. Chem. 4, 563 (2002).

    Article  Google Scholar 

  26. A.A. Khokhlov, L.V. Pugolovkin, M.I. Borzenko, and G.A. Tsirlina, Electrochemica. Acta 54, 5439 (2009).

    Article  Google Scholar 

  27. T. Todorovski and M. Najdoski, Mat. Res. Bull. 42, 2025 (2007).

    Article  Google Scholar 

  28. M.Z. Najdoski and T. Todorovski, Mat. Chem. Phys. 104, 483 (2007).

    Article  Google Scholar 

  29. H.G. Choi, Y.H. Jung, and D.K. Kim, J. Am. Ceram. Soc. 86, 1684 (2005).

    Article  Google Scholar 

  30. P.M. Woodward, A.W. Sleight, and T. Vogt, J. Sol. State Chem. 131, 9 (1997).

    Article  Google Scholar 

  31. B.D. Cullity and S.R. Stock, Elements of X-ray diffraction (Upper Saddle River, NJ: Prentice Hall, 2001), p. 388.

    Google Scholar 

  32. H.M.A. Soliman, A.B. Kashyout, M.S. El-Nouloy, and A.M. Abosehly, J. Mater. Sci. Electron 21, 1313 (2010).

    Article  Google Scholar 

  33. R.R. Kharade, S.R. Mane, R.M. Mane, P.S. Patil, and P.N. Bhosale, J. Sol–Gel Technol. 56, 177 (2010).

    Article  Google Scholar 

  34. G.B. Willamson and R.C. Smallman, Philos. Mag. 1, 34 (1956).

    Article  Google Scholar 

  35. P. Roy and S.K. Srivastava, Thin Solid Films 496, 293 (2006).

    Article  Google Scholar 

  36. T.S. Moss, Semiconductor Opto-Electronics (London: Butterwort, 1973), p. 48.

    Book  Google Scholar 

  37. H. Watanabe, K. Fujikata, Y. Oaki, and H. Imai, Chem. Commun. 49, 8477 (2013).

    Article  Google Scholar 

  38. W.G. Spitzer and H.V. Fan, Phys. Rev. 166, 882 (1957).

    Article  Google Scholar 

  39. M.C. Rao and J. Optoelect, Biomed. Mater. 3, 45 (2011).

    Google Scholar 

  40. E.H. Putley, Hall Effect and Related Phenomena (London: Butterworths, 1960), p. 110.

    Google Scholar 

  41. B.L. Theraja and A.K. Theraja, A Textbook of Electrical Technology (New Delhi, India: S.Chand & Company LTD, 1999), p. 1641.

    Google Scholar 

  42. M. Regragui, V. Jousseaume, M. Addou, A. Outzourhit, J.C. Berne´de, and B. El-Idrissi, Thin Solid Films 397, 238 (2001).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the US Army Research Laboratory—Broad Agency Announcement (BAA) under Contract No. W911NF-12-1-0588.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ifeanyichukwu C. Amaechi or Fabian I. Ezema.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaechi, I.C., Nwanya, A.C., Asogwa, P.U. et al. Hall Coefficient Determination and Electrical Properties of Chemical Bath-Deposited n-WO3 Thin Films. J. Electron. Mater. 44, 1110–1115 (2015). https://doi.org/10.1007/s11664-015-3637-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3637-4

Keywords

Navigation