Skip to main content
Log in

Nonaqueous Halide-Free Flux Reactions with Tin-Based Solders

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

New halide-free fluxes are becoming more prevalent in electronic packaging; however, their efficacy and reactive behavior with conventional solders has not been well characterized. In this work, we examine nonaqueous halide-free flux reactions of tin (Sn)-based solder surfaces using electrochemical methods. Cyclic voltammetry was used to study reactions of Sn(II) and Sn(IV) species, x-ray photoelectron spectroscopy (XPS) was used to study surface chemistry, and chronopotentiometry was used to quantify equilibrium constants of Sn–carboxylic complexes. Reactions were investigated using carboxylic acid solutions such as adipic acid or maleic acid in polyethylene glycol. Carboxylic acid-based fluxes are practically inactive toward SnO2 removal at room temperature (25°C); however, some species are capable of removing the oxides at temperatures as high as 180°C and at pH as low as 0.1. XPS results suggest the H+ activity of the carboxylic acid is the key to removing SnO2 on Sn-based solder surfaces. Equilibrium coefficients and potential-pH diagrams are given to elucidate the influence of pH on Sn surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.S. Ho, G.T. Wang, M. Ding, J.H. Zhao, and X. Dai, Microelectron. Reliab. 44, 719 (2004).

    Article  Google Scholar 

  2. B. Vandevelde, M. Gonzalez, P. Limaye, P. Ratchev, and E. Beyne, Microelectron. Reliab. 47, 259 (2007).

    Article  Google Scholar 

  3. K. Zeng and K.N. Tu, Mater Sci Eng R-Rep 38, 55 (2002).

    Article  Google Scholar 

  4. W. Yang, R.W. Messler, and L.E. Felton, J. Electron. Mater. 23, 765 (1994).

    Article  Google Scholar 

  5. K.J. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, and K.N. Tu, J Appl Phys 97, 024508 (2005).

    Article  Google Scholar 

  6. J.H.L. Pang, T.H. Low, B.S. Xiong, L.H. Xu, and C.C. Neo, Thin Solid Films 462, 370 (2004).

    Article  Google Scholar 

  7. L.C.X. Zou and C. Hunt, J. Mater. Res. 23, 2622 (2008).

    Article  Google Scholar 

  8. S.P. Yu, C.L. Liao, M.H. Hon, and M.C. Wang, J Mater Sci 35, 4217 (2000).

    Article  Google Scholar 

  9. S.P. Yu, H.J. Lin, M.H. Hon, and M.C. Wang, J. Mater Sci. 11, 461 (2000).

    Google Scholar 

  10. T. Singler, S. Meschter, and J. Spalik, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies, ed. K. Puttlitz and K. Stalter (New York: Marcel Dekker, Inc., 2004),

    Google Scholar 

  11. G.C. Jasbir Bath, T. Jensen, R. Michalkiewicz, and B. Toleno, Paper presented at the IPC APEX Halogen-Free Packaging (Las Vegas, NV, 2011).

  12. G.Y. Qu, S.S. Vegunta, K. Mai, C.J. Weinman, T. Ghosh, W. Wu, and J.C. Flake, J. Electrochem. Soc. 160, E49 (2013).

    Article  Google Scholar 

  13. N.A. Lange and J.A. Dean, Lange’s Handbook of Chemistry (New York: McGraw-Hill, 1973).

    Google Scholar 

  14. C.F. Han, Q. Liu, and D.G. Ivey, Electrochim. Acta 53, 8332 (2008).

    Article  Google Scholar 

  15. B.N. Stirrup and N.A. Hampson, Surf Technol 5, 429 (1977).

    Article  Google Scholar 

  16. L.C. Bichara, M.V.F. Bimbi, C.A. Gervasi, P.E. Alvarez, and S.A. Brandan, J. Mol. Struct. 1008, 95 (2012).

    Article  Google Scholar 

  17. J. Jarosz and C. Sinicki, Comptes Rendus De L Academie Des Sciences Serie Ii 292, 793 (1981).

    Google Scholar 

  18. A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (New York: Wiley, 1980).

    Google Scholar 

  19. H. Cho and Y.H. Yun, Ceram. Int. 37, 615 (2011).

    Article  Google Scholar 

  20. M. Seruga, M. MetikosHukovic, T. Valla, M. Milun, H. Hoffschultz, and K. Wandelt, J. Electroanal. Chem. 407, 83 (1996).

    Article  Google Scholar 

  21. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (Oxford: Pergamon Press, 1966).

    Google Scholar 

  22. S.S. Abd El Rehim, H.H. Hassan, and N.F. Mohamed, Corros. Sci. 46, 1071 (2004).

    Article  Google Scholar 

  23. A.S. Tselesh, Thin Solid Films 516, 6253 (2008).

    Article  Google Scholar 

  24. G.H. Biego, H. Biaudet, M. Joyeux, and G. Debry, Sci Des Aliments 16, 623 (1996).

    Google Scholar 

  25. Y. Mino, J. Health Sci. 52, 67 (2006).

    Article  Google Scholar 

  26. L. Perring and M. Basic-Dvorzak, Anal. Bioanal. Chem. 374, 235 (2002).

    Article  Google Scholar 

  27. I. Trandafir, V. Nour, and M.E. Ionica, J Environ Prot Ecol 11, 49 (2010).

    Google Scholar 

  28. I. Trandafir, V. Nour, and M.E. Ionica, Pol J. Environ. Stud. 21, 749 (2012).

    Google Scholar 

  29. Y.F. Wu and T.H. Tsai, Microelectron. Eng. 84, 2790 (2007).

    Article  Google Scholar 

  30. C.B. Castells, C. Rafols, M. Roses, and E. Bosch, J. Chromatogr. A 1002, 41 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Flake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, G., Weinman, C.J., Ghosh, T. et al. Nonaqueous Halide-Free Flux Reactions with Tin-Based Solders. J. Electron. Mater. 44, 1144–1150 (2015). https://doi.org/10.1007/s11664-015-3635-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3635-6

Keywords

Navigation