Skip to main content
Log in

Linear Low Density Polyethylene (LLDPE) as Flexible Substrate for Wrist and Arm Antennas in C-Band

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper focuses on the development and study of linear low density polyethylene as a flexible substrate for conformal antennas for body-worn applications. Thermal stability, tensile strength and elongation at break of the substrate were studied. The permittivity of the substrate was 2.2 and tan δ was found to be 0.0003 at 6 GHz. Since the antenna is being developed for wrist and arm wearing in C-band, the performance of the antenna, such as the S 11 parameter and radiation pattern, were studied with different bending axes and with bending curvature approximating that of the arm and wrist. The performance of a 6 GHz rectangular patch antenna with bending was found to be consistent with the flat profile antenna at the same frequency. A maximum shift in the resonant frequency of ∼20 MHz was observed. The −10 dB bandwidth and directivity of the antenna did not change much with bending. The maximum bending radius in the present study is 10 mm, and S 11 was found to be −17.53 dB at 5.94 GHz and −14.02 dB at 6.06 GHz for a bending axis parallel to the radiating and non-radiating edge, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.A. Cetiner, H. Jafarkhani, J.Y. Qian, H.J. Yoo, A. Grau, and F. De Flaviis, IEEE Commun. Mag. 42, 62 (2004).

    Article  Google Scholar 

  2. M. Kubo, X. Li, C. Kim, M. Hashimoto, B.J. Wiley, D. Ham, and G.M. Whitesides, Adv. Mater. 22, 2749 (2010).

    Article  Google Scholar 

  3. S. Cheng, A. Rydberg, K. Hjort, and Z. Wu, Appl. Phys. Lett. 94, 144103 (2009).

    Article  Google Scholar 

  4. N. Tiercelin, P. Coquet, V. Senez, R. Sauleau, and H. Fujita, J. Micromech. Microeng. 16, 2389 (2006).

    Article  Google Scholar 

  5. J.H. So, J. Thelen, A. Qusba, G.J. Hayes, G. Lazzi, and M.D. Dickey, Adv. Funct. Mater. 19, 3632 (2009).

    Article  Google Scholar 

  6. G.De. Jean, R. Bairavasubramanian, D. Thompson, G.E. Ponchak, M.M. Tentzeris, and J. Papapolymerou, IEEE Antennas Wirel. Propag. Lett. 4, 22 (2005).

    Article  Google Scholar 

  7. J. Trajkovikj, J.F. Zürcher, and A.K. Skrivervik, IEEE Antennas Propag. Mag. 55, 287 (2013).

    Article  Google Scholar 

  8. S. Koulouridis, G. Kiziltas, Y. Zhou, D.J. Hansford, and J.L. Volakis, IEEE Trans. Microw. Theory Tech. 54, 4202 (2006).

    Article  Google Scholar 

  9. H.R. Khaleel, M. Hussain, A. Rizzo, and D.G. Rucker, J. Displ. Technol. 8, 91 (2012).

    Article  Google Scholar 

  10. L. Yang, A. Rida, R. Vyas, and M.M. Tentzeris, IEEE Antennas Propag. Mag. 51, 13 (2009).

    Article  Google Scholar 

  11. R. Salvado, C. Loss, R. Gonçalves, and P. Pinho, Sensors 12, 15841 (2012).

    Article  Google Scholar 

  12. D. Thomas, C. Janardhanan, and M.T. Sebastian, Int. J. Appl. Ceram. Technol. 8, 1099 (2011).

    Article  Google Scholar 

  13. L.K. Namitha, J. Chameswary, S. Ananthakumar, and M.T. Sebastian, Ceram. Int. 39, 7077 (2013).

    Article  Google Scholar 

  14. L.K. Namitha and M.T. Sebastian, Mater. Res. Bull. 48, 4911 (2013).

    Article  Google Scholar 

  15. S. Rajesh, K.P. Murali, V. Priyadarsini, S.N. Potty, and R. Ratheesh, Mater. Sci. Eng. B 163, 1 (2009).

    Article  Google Scholar 

  16. P.S. Hall and Y. Hao, Antennas and Propagation for Body-Centric Wireless Communications (Artech House, 2006), pp. 151–186.

  17. V.K. Palukuru, K. Sonoda, R. Surendran, and H. Jantunen, Prog. Electromagn. Res. C 16, 195 (2010).

    Article  Google Scholar 

  18. J. Buckley, K.G. McCarthy, B.O. Flynn, and C.O. Mathuna, Proceedings of the 40th European Microwave Conference, 1738 (2010).

  19. J.E. Mark, Polymer Data Handbook (USA: Oxford University Press, 2009), p. 508.

    Google Scholar 

  20. X. Huang, F. Liu, and P. Jiang, IEEE Trans. Dielectr. Electr. Insul. 17, 1697 (2010).

    Article  Google Scholar 

  21. D.J. King, Microwave reflection resonator sensors, U.S. Patent No. 5334941, 1994.

  22. K. Borah and N.S. Bhattacharyya, IEEE Trans. Dielectr. Electr. Insul. 17, 1676 (2010).

    Article  Google Scholar 

  23. C.A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (New Delhi: Wiley India, 2014), p. 811.

    Google Scholar 

  24. R. Garg, P. Bhatia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook (Norwood: Artech House, 2001), p. 253.

    Google Scholar 

  25. S. Subramaniam and B. Gupta, Microwave Opt. Technol. Lett. 53, 2004 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi S. Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, P.J., Bhattacharyya, S. & Bhattacharyya, N.S. Linear Low Density Polyethylene (LLDPE) as Flexible Substrate for Wrist and Arm Antennas in C-Band. J. Electron. Mater. 44, 1071–1080 (2015). https://doi.org/10.1007/s11664-015-3629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3629-4

Keywords

Navigation