Journal of Electronic Materials

, Volume 44, Issue 6, pp 1967–1971 | Cite as

Comparison of Thermoelectric Transport Measurement Techniques Using n-type PbSe

  • Heng Wang
  • Mikhail I. Fedorov
  • Aleksander A. Shabaldin
  • Piotr P. Konstantinov
  • G. Jeffrey Snyder
Article

Abstract

We compare high-temperature thermoelectric transport measurements at two different institutes using different setups. The material studied is n-type PbSe doped with Cl. The measurements at the Ioffe Institute used a steady-state design which allowed all three properties to be measured simultaneously from bar-shaped samples. Those at Caltech have used Van der Pauw geometry for resistivity, an oscillation method for the Seebeck coefficient, and a laser flash technique for thermal conductivity. The results for each individual property show differences around 10% in some cases, while the evaluation of overall zT for the three samples with different doping levels is mostly below 10%. The steady-state method at the Ioffe Institute was able to measure thermal conductivity at high temperature as accurately as the laser flash method. In general, great caution is needed for any setup in order to accurately measure high-temperature transport properties and hence zT.

Keywords

Thermoelectrics thermal conductivity Seebeck coefficient heat capacity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.V. Petrov, Thermoelectric Properties of Semiconductors (Moscow: Academy of Science of USSR, 1963), pp. 27–35. (in Russian).Google Scholar
  2. 2.
    V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).CrossRefGoogle Scholar
  3. 3.
    R. Heikes and R. Ure, Thermoelectricity: Science and Engineering (New York: Interscience, 1961), pp. 285–297.Google Scholar
  4. 4.
    W.J. Parker, R.J. Jenkins, G.L. Abbott, and C.P. Butler, J.␣Appl. Phys. 32, 1679 (1961).CrossRefGoogle Scholar
  5. 5.
    G.T. Alekseeva, E.A. Gurieva, P.P. Konstantinov, L.V. Prokofeva, and M.I. Fedorov, Semiconductors 30, 1125 (1996).Google Scholar
  6. 6.
    K.A. Borup, E.S. Toberer, L.D. Zoltan, G. Nakatsukasa, M. Errico, J.P. Fleurial, B.B. Iversen, and G.J. Snyder, Rev. Sci. Instrum. 83, 123902 (2012).CrossRefGoogle Scholar
  7. 7.
    H. Wang, Y. Pei, A.D. LaLonde, and G.J. Snyder, Proc. Natl. Acad. Sci. USA 109, 9705 (2012).CrossRefGoogle Scholar
  8. 8.
    R. Blachnik and R. Igel, Z. Naturforsch. B 29, 625 (1974).CrossRefGoogle Scholar
  9. 9.
    O. Delaire, A.F. May, M.A. McGuire, W.D. Porter, M.S. Lucas, M.B. Stone, D.L. Abernathy, V.A. Ravi, S.A. Firdosy, and G.J. Snyder, Phys. Rev. B 80, 184302 (2009).CrossRefGoogle Scholar
  10. 10.
    M. Lach-hab, D.A. Papaconstantopoulos, and M.J. Mehl, J.␣Phys. Chem. Solids 63, 833 (2002).CrossRefGoogle Scholar
  11. 11.
    Y.I. Ravich, B.A. Efimova, and I.A. Smirnov, Semiconducting Lead Chalcogenides (New York: Plenum, 1970), p. 352.CrossRefGoogle Scholar
  12. 12.
    S. Iwanaga, E.S. Toberer, A. Lalonde, and G.J. Snyder, Rev. Sci. Instrum. 82, 063905 (2011).CrossRefGoogle Scholar
  13. 13.
    H. Wang, W. Porter, H. Böttner, J. König, L. Chen, S. Bai, T. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J. Sharp, J. Lo, H. Kleinke, and L. Kiss, J. Electron. Mater. 42, 1073 (2013).CrossRefGoogle Scholar
  14. 14.
    H. Wang, W. Porter, H. Böttner, J. König, L. Chen, S. Bai, T. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J. Sharp, J. Lo, H. Kleinke, and L. Kiss, J. Electron. Mater. 42, 654 (2013).CrossRefGoogle Scholar
  15. 15.
    J. Martin, T. Tritt, and C. Uher, J. Appl. Phys. 108, 121101 (2010).CrossRefGoogle Scholar
  16. 16.
    K.A. Borup, J. De Boor, H. Wang, F. Drymiotis, F. Gascoin, X. Shi, L. Chen, M.I. Fedorov, E. Muller, B.B. Iversen, and G.J. Snyder, Energy Environ. Sci. (2015). doi:10.1039/C4EE01320D.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Heng Wang
    • 1
  • Mikhail I. Fedorov
    • 2
    • 3
  • Aleksander A. Shabaldin
    • 2
  • Piotr P. Konstantinov
    • 2
  • G. Jeffrey Snyder
    • 1
    • 3
  1. 1.Materials ScienceCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Ioffe Physical-Technical Institute of the Russian Academy of SciencesSt. PetersburgRussia
  3. 3.ITMO UniversitySt. PetersburgRussia

Personalised recommendations