Skip to main content
Log in

Synthesis and Luminescence Properties of Eu3+ Doped High Temperature Form of Bi2MoO6

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work reports on the luminescence properties of the Eu3+-doped high-temperature form of Bi2MoO6 by a solid-state reaction technique at high temperature. Various characterization methods including x-ray diffraction, scanning electron microscopic, Fourier transform infrared, and fluorescence spectroscopy measurements were utilized in order to investigate the phase purity and surface morphology as well as photoluminescence properties for as-prepared phosphors. The spectroscopic characteristics including excitation and emission spectrum, concentration quenching phenomenon, decay curves, and chromaticity coordinates are discussed in detail. The nature of the luminescence behavior of Eu3+ was understood in term of the Judd–Ofelt theory, and the luminescent quantum efficiency of 5D07F2 transition of Eu3+ was estimated. The as-prepared phosphors can be effectively excited with a 465-nm blue light, and exhibit a reddish-orange emission belonging to the prevailing 5D07F2 transition of Eu3+ with a decay time of milliseconds. This indicates that the Bi2MoO6:Eu3+ phosphors could have potential application in white light-emitting diodes (w-LEDs) based on blue LED chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Maczka, P.T.C. Freire, C. Luz-Lima, W. Paraguassu, J. Hanuza, and J. Mendes Filho, J. Phys.: Condens. Matter 22, 015901 (2010).

    Google Scholar 

  2. C. Xu, D.B. Zou, L.H. Wang, H. Luo, and T.K. Ying, Ceram. Int. 35, 2099 (2009).

    Article  Google Scholar 

  3. A.R. Lim, J.H. Chang, S.H. Choh, and M.S. Jang, J. Korean Phys. Soc. 25, 109 (1992).

    Google Scholar 

  4. D.J. Buttrey, T. Vogt, U. Wildgruber, and W.R. Robinson, J. Solid State Chem. 111, 118 (1994).

    Article  Google Scholar 

  5. P. Begue, R. Enjalbert, J. Galy, and A. Castro, Solid State Sci. 2, 637 (2000).

    Article  Google Scholar 

  6. H. Kodama, A. Watanabe, and J. Solid, State. Chem. 56, 225 (1985).

    Article  Google Scholar 

  7. R. Rangel, P. Bartolo-Perez, A. Gomez-Cortes, G. Diaz, S. Fuentes, and D.H. Galvan, J. Mater. Synth. Process. 9, 207 (2001).

    Article  Google Scholar 

  8. M.T. Le, W.J.M. Van Well, I. Van Driessche, and S. Hoste, Appl. Catal. A 267, 227 (2004).

    Article  Google Scholar 

  9. Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, J. Phys. Chem. B 110, 17790 (2006).

    Article  Google Scholar 

  10. A. Martínez-de la Cruz and S. Obregón Alfaro, J. Mol. Catal. A 320, 85 (2010).

    Article  Google Scholar 

  11. J.S. Liao, H.Z. Huang, H.Y. You, X. Qiu, Y. Li, B. Qiu, and H.R. Wen, Mater. Res. Bull. 45, 1145 (2010).

    Article  Google Scholar 

  12. C.C. Zhao, X. Yin, F.Q. Huang, and Y. Hang, J. Solid State Chem. 184, 3190 (2011).

    Article  Google Scholar 

  13. J.A. Wani, N.S. Dhoble, N.S. Kokode, B. Deva Prasad Raju, and S.J. Dhoble., J. Lumin. 147, 223 (2014).

    Article  Google Scholar 

  14. B. Han, H.B. Liang, H.Y. Ni, Q. Su, G.T. Yang, J.Y. Shi, and G.B. Zhang, Opt. Express 17, 7138 (2009).

    Article  Google Scholar 

  15. X.G. Zhang, C.Y. Zhou, J.H. Song, L.Y. Zhou, and M.L. Gong, J. Alloys Compd. 592, 283 (2014).

    Article  Google Scholar 

  16. G.G. Li, Z.Y. Hou, C. Peng, W.X. Wang, Z.Y. Cheng, C.X. Li, H.Z. Lian, and J. Lin, Adv. Funct. Mater. 20, 3446 (2010).

    Article  Google Scholar 

  17. B. Han, J. Zhang, Z.M. Wang, Y.Y. Liu, and H.Z. Shi, J. Lumin. 149, 150 (2014).

    Article  Google Scholar 

  18. L.L. Li, J.J. Zhang, W.W. Zi, S.C. Gan, G.J. Ji, H.F. Zou, and X.C. Xu, Solid State Sci. 29, 58 (2014).

    Article  Google Scholar 

  19. Y.C. Chang, C.H. Liang, S. An Yan, and Y.S. Chang, J. Phys. Chem. C 114, 3645 (2010).

    Article  Google Scholar 

  20. L. Krishna Bharat, S.H. Lee, and J.S. Yu, Mater. Res. Bull. 53, 49 (2014).

    Article  Google Scholar 

  21. H. Nagabhushana, B.M. Nagabhushana, M. Madesh Kumar, Chikkahanumantharayappa, K.V.R. Murthy, C. Shivakumara, and R.P.S. Chakradhar, Spect. Acta Part A 78, 64 (2011).

    Article  Google Scholar 

  22. R.J. Yu, H.J. Li, H.L. Ma, C.F. Wang, and H. Wang, Solid State Sci. 29, 34 (2014).

    Article  Google Scholar 

  23. Y.Y. Tsai, H.R. Shih, M.T. Tsai, and Y.S. Chang, Mater. Chem. Phys. 143, 611 (2014).

    Article  Google Scholar 

  24. T. Kim, Y. Yoon, D. Kil, Y. Hwang, H. Chung, I.H. Kim, and Y. Ahn, Mater. Lett. 47, 290 (2001).

    Article  Google Scholar 

  25. B.R. Judd, Phys. Rev. 127, 750 (1962).

    Article  Google Scholar 

  26. G.S. Ofelt, J. Chem. Phys. 37, 511 (1962).

    Article  Google Scholar 

  27. G. Blasse, Philips Res. Rep. 24, 131 (1969).

    Google Scholar 

  28. R.J. Wiglusz, T. Grzyb, A. Lukowiak, A. Bednarkiewicz, S. Lis, and W. Strek, J. Lumin. 133, 102 (2013).

    Article  Google Scholar 

  29. C.A. Kodaira, H.F. Brito, O.L. Malta, and O.A. Serr, J. Lumin. 101, 11 (2003).

    Article  Google Scholar 

  30. G.F. de Sá, O.L. Malta, C.M. Donegá, A.M. Simas, R.L. Longo, P.A. Santa-Cruz, and E.F. Silva Jr., Coord. Chem. Rev. 196, 165 (2000).

    Article  Google Scholar 

Download references

Acknowledgments

The work is financially supported by the Science and Technology Project of Henan Province (no. 142300410245), the Science and Technology Research Key Project of Education Department of Henan Province (12A430021), and the Scientific Research Fund of Zhengzhou University of Light Industry (2013XJJ003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Han or Hengzhen Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Zhang, J., Li, P. et al. Synthesis and Luminescence Properties of Eu3+ Doped High Temperature Form of Bi2MoO6 . J. Electron. Mater. 44, 1028–1033 (2015). https://doi.org/10.1007/s11664-014-3621-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3621-4

Keywords

Navigation