Skip to main content
Log in

Growth of Wide-Bandgap Nanocrystalline Silicon Carbide Films by HWCVD: Influence of Filament Temperature on Structural and Optoelectronic Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) thin films have been deposited using a hot-wire chemical vapor deposition technique on quartz substrates with a mixture of silane, methane, and hydrogen gases as precursors at a reasonably high deposition rate of approximately 15 nm/min to 50 nm/min. The influence of the filament temperature (T F) on the structural, optical, and electrical properties of the SiC film has been investigated using x-ray diffraction, Raman scattering, Fourier-transform infrared spectroscopy, x-ray photoelectron spectroscopy, ultraviolet–visible–near infrared transmission spectroscopy, and dark conductivity (σ d) studies. Films deposited at low T F (1800°C to 1900°C) are amorphous in nature with high density of Si–Si bonds, whereas high-T F (≥2000°C) films are nanocrystalline embedded in an amorphous SiC matrix with higher concentration of Si–C bonds and negligible concentration of Si–Si bonds. The bandgap (E g) varies from 2.5 eV to 3.1 eV and σ d (50°C) from ∼10−9 Ω−1 cm−1 to 10−1 Ω−1 cm−1 as T F is increased from 1900°C to 2200°C. This increase in E g and σ d is due to microstructural changes and unintentional oxygen doping of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).

    Article  Google Scholar 

  2. W.J. Choyke, H. Matsunami, and G. Pensl, Silicon Carbide: Recent Major Advances, 2nd ed. (New York: Springer, 2003), p. 4.

    Google Scholar 

  3. F. Nava, G. Bertuccio, A. Cavallini, and E. Vittones, Meas. Sci. Technol. 19, 102001 (2008).

    Article  Google Scholar 

  4. I.A. Yunaz, K. Hashizume, S. Miyajima, A. Yamada, and M. Konagai, Sol. Energy Mater. Sol. Cells 93, 1056 (2009).

    Article  Google Scholar 

  5. Y. Huang, A. Dasgupta, A. Gordijn, F. Finger, and R. Carius, Appl. Phys. Lett. 90, 203502 (2007).

    Article  Google Scholar 

  6. F. Finger, O. Astakhov, T. Bronger, R. Carius, T. Chen, A. Dasgupta, A. Gordijn, L. Houben, Y. Huang, and S. Klein, Thin Solid Films 517, 3507 (2009).

    Article  Google Scholar 

  7. T. Chen, Y. Huang, D. Yang, R. Carius, and F. Finger, Thin Solid Films 519, 4523 (2011).

    Article  Google Scholar 

  8. S. Miyajima, K. Haga, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys. 45, L432 (2006).

    Article  Google Scholar 

  9. C. Ehling, J.H. Werner, and M.B. Schubert, Phys. Status Solidi C7, 1016 (2010).

    Google Scholar 

  10. H. Hobert, H.H. Dunken, G. Peiter, W. Stier, M. Diegel, and H. Stafast, Appl. Phys. A Mater. Sci. Process. 69, 69 (1999).

    Article  Google Scholar 

  11. W.K. Choi, F.L. Loo, F.C. Loh, and K.L. Tan, J. Appl. Phys. 80, 1611 (1996).

    Article  Google Scholar 

  12. T. Rajagopalan, X. Wang, B. Lahlouh, C. Ramkumar, P. Dutta, and S. Gangopadhyay, J. Appl. Phys. 94, 5252 (2003).

    Article  Google Scholar 

  13. S. Miyajima, M. Sawamura, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys. 47, 3368 (2008).

    Article  Google Scholar 

  14. Alka Kumbhar, S.B. Patil, S. Kumar, R. Lal, and R.O. Dusane, Thin Solid Films 395, 244 (2001).

    Article  Google Scholar 

  15. S. Klein, R. Carius, F. Finger, and L. Houben, Thin Solid Films 501, 169 (2006).

    Article  Google Scholar 

  16. T. Chen, F. Köhler, A. Heidt, Y. Huang, F. Finger, and R. Carius, Thin Solid Films 519, 4511 (2011).

    Article  Google Scholar 

  17. H. Matsumura, Jpn. J. Appl. Phys. 37, 3175 (2003).

    Article  Google Scholar 

  18. S. Asari, T. Fujinaga, M. Takagi, M. Hashimoto, K. Saito, M. Harada, and M. Ishikawa, Thin Solid Films 516, 541 (2008).

    Article  Google Scholar 

  19. Y. Komura, A. Tabata, T. Narita, and A. Kondo, Thin Solid Films 516, 633 (2008).

    Article  Google Scholar 

  20. Y. Komura, A. Tabata, T. Narita, M. Kanaya, A. Kondo, and T. Mizutani, Jpn. J. Appl. Phys. 46, 45 (2007).

    Article  Google Scholar 

  21. Y. Hoshide, Y. Komura, A. Tabata, A. Kitagawa, and A. Kondo, Thin Solid Films 517, 3520 (2009).

    Article  Google Scholar 

  22. T. Itoh, Y. Katoh, T. Fujiwara, K. Fukunaga, S. Nonomura, and S. Nitta, Thin Solid Films 395, 240 (2001).

    Article  Google Scholar 

  23. A. Tabata and Y. Komura, Surf. Coat. Technol. 201, 8986 (2007).

    Article  Google Scholar 

  24. Purabi Gogoi, Himanshu S. Jha, and Pratima Agarwal, Thin Solid Films 518, 6818 (2010).

    Article  Google Scholar 

  25. Akimori Tabata and Akinori Naito, Thin Solid Films 519, 4451 (2011).

    Article  Google Scholar 

  26. Y. Komura, A. Tabata, T. Naritu, A. Kondo, and T. Mizutani, J. Non-Cryst. Solids 352, 1367 (2006).

    Article  Google Scholar 

  27. Q. Cheeng, S. Xu, J.W. Chai, S.Y. Huang, Y.P. Ren, J.D. Long, P.P. Rutkevych, and K. Ostrikov, Thin Solid Films 516, 5991 (2008).

    Article  Google Scholar 

  28. J. Gubicza, S. Nauyoks, L. Balogh, J. Labar, T.W. Zerdaa, and T. Ungár, J. Mater. Res. 22, 1314 (2007).

    Article  Google Scholar 

  29. A. Dasgupta, S. Klein, L. Houben, R. Carius, F. Finger, and M. Luysberg, Thin Solid Films 516, 618 (2008).

    Article  Google Scholar 

  30. R.J. Nemanish, J.T. Glass, G. Lucovosky, and R.E. Schorder, J. Vac. Sci. Technol. A6, 1783 (1988).

    Article  Google Scholar 

  31. W.K. Choi, T.Y. Ong, L.S. Tan, F.C. Loh, and K.L. Tan, J.␣Appl. Phys. 83, 4968 (1998).

    Article  Google Scholar 

  32. S. Ray, D. Das, and A.K. Barua, Sol. Energy Mater. 15, 45 (1987).

    Article  Google Scholar 

  33. H. Shanks, C.J. Faug, L. Ley, M. Cardona, F.J. Demand, and S. Kalbitzer, Phys. Status Solidi B 100, 43 (1980).

    Article  Google Scholar 

  34. A. Matsuda and J. Non-Cryst, Solids 338–340, 1 (2004).

    Google Scholar 

  35. B.P. Swain, Surf. Coat. Technol. 201, 1589 (2006).

    Article  Google Scholar 

  36. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomber, Handbook of X-ray Photoelectron Spectroscopy, 2nd ed. (Eden Prairie: Perkin-Elmer, 1992), p. 252.

    Google Scholar 

  37. J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi B 15, 627 (1966).

    Article  Google Scholar 

  38. S. Kerdiles, R. Madelon, and R. Rizk, Appl. Surf. Sci. 184, 150 (2001).

    Article  Google Scholar 

  39. A. Dasgupta, Y. Huang, L. Houben, S. Klein, F. Finger, R. Carius, and M. Luysberg, Thin Solid Films 516, 622 (2008).

    Article  Google Scholar 

  40. R. Swanepoel, J. Phys. E 16, 1214 (1983).

    Article  Google Scholar 

Download references

Acknowledgements

The work reported here is supported by the Board for Research in Fusion Science & Technology (BRFST). We are very grateful to Dr. D.M. Phase, UGC-DAE Consortium for Scientific Research, Indore for XPS measurements, Dr. Manoranjan Kar, Department of Physics, IIT Patna for XRD measurements, and the Central Instrument Facility, IIT Guwahati for Raman measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima Agarwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, H.S., Yadav, A., Singh, M. et al. Growth of Wide-Bandgap Nanocrystalline Silicon Carbide Films by HWCVD: Influence of Filament Temperature on Structural and Optoelectronic Properties. J. Electron. Mater. 44, 922–928 (2015). https://doi.org/10.1007/s11664-014-3580-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3580-9

Keywords

Navigation