Skip to main content
Log in

Thermal Conductivity of Magnetically Aligned Graphene–Polymer Composites with Fe3O4-Decorated Graphene Nanosheets

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A facile approach was developed in this study to align the magnetically functionalized graphene nanosheets (M-GNSs) within an epoxy matrix. M-GNSs were firstly synthesized by a modified polyol method with surface modification of Fe3O4 nanoparticles, and then incorporated into epoxy under an externally applied magnetic field. The alignment-dependent thermal conductivity of the M-GNSs/epoxy composite treated with various intensities of magnetic field in the range of 0–1.0 T was examined. Both the good dispersion and high alignment were found in the composites treated above 0.5 T of magnetic field, as verified by the x-ray diffraction and polarized Raman spectra. Thermal conductivity in the aligned direction of 0.5 T-treated composites with 0.52 vol.% filler content (0.361 ± 0.018 W/mK) showed enhancements of 111 ± 28% and 48 ± 16%, compared to that of epoxy (0.174 ± 0.014 W/mK) and non-magnetically treated composites (0.252 ± 0.019 W/mK), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Geim and K.S. Novoselov, Nature Mater. 6, 183 (2007).

    Article  Google Scholar 

  2. S. Ghosh, I. Calizo, D. Teweldebrhan, E. Pokatilov, D. Nika, A. Balandin, W. Bao, F. Miao, and C.N. Lau, Appl. Phys. Lett. 92, 151911 (2008).

    Article  Google Scholar 

  3. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).

    Article  Google Scholar 

  4. A.A. Balandin, Nat. Mater. 10, 569 (2011).

    Article  Google Scholar 

  5. C.C. Teng, C.C.M. Ma, C.H. Lu, S.Y. Yang, S.H. Lee, M.C. Hsiao, M.Y. Yen, K.C. Chiou, and T.M. Lee, Carbon 49, 5107 (2011).

    Article  Google Scholar 

  6. A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, and R.C. Haddon, J. Phys. Chem. C 111, 7565 (2007).

    Article  Google Scholar 

  7. K.M. Shahil and A.A. Balandin, Nano Lett. 12, 861 (2012).

    Article  Google Scholar 

  8. K. Chu, W. Li, and F. Tang, Phys. Lett. A 377, 910 (2013).

    Article  Google Scholar 

  9. T. Ramanathan, A. Abdala, S. Stankovich, D. Dikin, M. Herrera-Alonso, R. Piner, D. Adamson, H. Schniepp, X. Chen, and R. Ruoff, Nat. Nanotechnol. 3, 327 (2008).

    Article  Google Scholar 

  10. D. Cai and M. Song, J. Mater. Chem. 20, 7906 (2010).

    Article  Google Scholar 

  11. H. Kim, A.A. Abdala, and C.W. Macosko, Macromolecules 43, 6515 (2010).

    Article  Google Scholar 

  12. Q. Liang, X. Yao, W. Wang, Y. Liu, and C.P. Wong, ACS Nano 5, 2392 (2011).

    Article  Google Scholar 

  13. X. Tian, M.E. Itkis, E.B. Bekyarova, and R.C. Haddon, Sci. Rep. 3, 1710 (2013).

    Google Scholar 

  14. D. Shi, P. He, P. Zhao, F.F. Guo, F. Wang, C. Huth, X. Chaud, S.L. Bud’ko, and J. Lian, Compos. Part B. 42, 1532 (2011).

    Article  Google Scholar 

  15. W.L. Song, P. Wang, L. Cao, A. Anderson, M.J. Meziani, A.J. Farr, and Y.P. Sun, Angew. Chem. Int. Ed. 51, 6498 (2012).

    Article  Google Scholar 

  16. L. Chen, L. Wang, Z. Shuai, and D. Beljonne, J. Phys. Chem. Lett. 4, 2158 (2013).

    Article  Google Scholar 

  17. N. Yousefi, M.M. Gudarzi, Q. Zheng, S.H. Aboutalebi, F. Sharif, and J.K. Kim, J. Mater. Chem. 22, 12709 (2012).

    Article  Google Scholar 

  18. Z. Wang, Carbon 47, 3050 (2009).

    Article  Google Scholar 

  19. N. Yousefi, X. Lin, Q. Zheng, X. Shen, J.R. Pothnis, J. Jia, E. Zussman, and J.K. Kim, Carbon 59, 406 (2013).

    Article  Google Scholar 

  20. T. Kimura, H. Ago, M. Tobita, S. Ohshima, M. Kyotani, and M. Yumura, Adv. Mater. 14, 1380 (2002).

    Article  Google Scholar 

  21. C. Park, J. Wilkinson, S. Banda, Z. Ounaies, K.E. Wise, G. Sauti, P.T. Lillehei, and J.S. Harrison, J. Polym. Sci. Pol. Phys. 44, 1751 (2006).

    Article  Google Scholar 

  22. X.L. Xie, Y.W. Mai, and X.P. Zhou, Mater. Sci. Eng. R 49, 89 (2005).

    Article  Google Scholar 

  23. H.B. Cho, Y. Tokoi, S. Tanaka, T. Suzuki, W. Jiang, H. Suematsu, K. Niihara, and T. Nakayama, J. Mater. Sci. 46, 2318 (2011).

    Article  Google Scholar 

  24. R.M. Erb, R. Libanori, N. Rothfuchs, and A.R. Studart, Science 335, 199 (2012).

    Article  Google Scholar 

  25. F. Donati, Q. Dubout, G. Autes, F. Patthey, F. Calleja, P. Gambardella, O. Yazyev, and H. Brune, Phys. Rev. Lett. 111, 236801 (2013).

    Article  Google Scholar 

  26. J. Su, M. Cao, L. Ren, and C. Hu, J. Phys. Chem. C 115, 14469 (2011).

    Article  Google Scholar 

  27. K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu, Adv. Mater. 24, 1868 (2012).

    Article  Google Scholar 

  28. Y. Zhang, B. Chen, L. Zhang, J. Huang, F. Chen, Z. Yang, J. Yao, and Z. Zhang, Nanoscale 3, 1446 (2011).

    Article  Google Scholar 

  29. T.A. Pham, N.A. Kumar, and Y.T. Jeong, Synth. Met. 160, 2028 (2010).

    Article  Google Scholar 

  30. D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).

    Article  Google Scholar 

  31. D. Caruntu, G. Caruntu, and C.J. O’Connor, J. Phys. D 40, 5801 (2007).

    Article  Google Scholar 

  32. K. Chu, Q. Wu, C. Jia, X. Liang, J. Nie, W. Tian, G. Gai, and H. Guo, Compos. Sci. Technol. 70, 298 (2010).

    Article  Google Scholar 

  33. S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, ACS Nano 4, 2822 (2010).

    Article  Google Scholar 

  34. J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, and M. Wang, Small 8, 1214 (2012).

    Article  Google Scholar 

  35. T. Jiang, T. Kuila, N.H. Kim, B.C. Ku, and J.H. Lee, Compos. Sci. Technol. 79, 115 (2013).

    Article  Google Scholar 

  36. G. Xie, P. Xi, H. Liu, F. Chen, L. Huang, Y. Shi, F. Hou, Z. Zeng, C. Shao, and J. Wang, J. Mater. Chem. 22, 1033 (2012).

    Article  Google Scholar 

  37. Y.L. Dong, H.G. Zhang, Z.U. Rahman, L. Su, X.J. Chen, J. Hu, and X.G. Chen, Nano Scale 4, 3969 (2012).

    Google Scholar 

  38. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, and C.A. Ventrice Jr, Carbon 47, 145 (2009).

    Article  Google Scholar 

  39. Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, and Z.X. Shen, ACS Nano 2, 2301 (2008).

    Article  Google Scholar 

  40. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’Homme, I.A. Aksay, and R. Car, Nano Lett. 8, 36 (2008).

    Article  Google Scholar 

  41. Y. Cheng, R. Tan, W. Wang, Y. Guo, P. Cui, and W. Song, J. Mater. Sci. 45, 5347 (2010).

    Article  Google Scholar 

  42. C. Cheng and D. Li, Adv. Mater. 25, 13 (2013).

    Article  Google Scholar 

  43. I. Zaman, T.T. Phan, H.C. Kuan, Q. Meng, L.T. La Bao, L. Luong, O. Youssf, and J. Ma, Polymer 52, 1603 (2011).

    Article  Google Scholar 

  44. C. Wang, Q. Zhang, Q.H. Wu, T.W. Ng, T. Wong, J. Ren, Z. Shi, C.S. Lee, S.T. Lee, and W. Zhang, RSC Adv. 2, 10680 (2012).

    Article  Google Scholar 

  45. L. Xie, H. Wang, C. Jin, X. Wang, L. Jiao, K. Suenaga, and H. Dai, J. Am. Chem. Soc. 133, 10394 (2011).

    Article  Google Scholar 

  46. Z. Lin, Y. Liu, S. Raghavan, K.S. Moon, S.K. Sitaraman, and C.P. Wong, ACS Appl. Mater. Interface 5, 7633 (2013).

    Article  Google Scholar 

  47. S. Ganguli, A.K. Roy, and D.P. Anderson, Carbon 46, 806 (2008).

    Article  Google Scholar 

  48. F. Yavari, H.R. Fard, K. Pashayi, M.A. Rafiee, A. Zamiri, Z. Yu, R. Ozisik, T. Borca-Tasciuc, and N. Koratkar, J. Phys. Chem. C 115, 8573 (2011).

    Article  Google Scholar 

  49. S. Chatterjee, J. Wang, W. Kuo, N. Tai, C. Salzmann, W. Li, R. Hollertz, F. Nüesch, and B. Chu, Chem. Phys. Lett. 531, 6 (2012).

    Article  Google Scholar 

  50. C. Liu, H. Huang, Y. Wu, and S. Fan, Appl. Phys. Lett. 84, 4248 (2004).

    Article  Google Scholar 

  51. M.T. Hung, O. Choi, Y.S. Ju, and H.T. Hahn, Appl. Phys. Lett. 89, 023117 (2006).

    Article  Google Scholar 

  52. E. Choi, J. Brooks, D. Eaton, M. Al-Haik, M. Hussaini, H. Garmestani, D. Li, and K. Dahmen, J. Appl. Phys. 94, 6034 (2003).

    Article  Google Scholar 

  53. T. Terao, C. Zhi, Y. Bando, M. Mitome, C. Tang, and D. Golberg, J. Phys. Chem. C 114, 4340 (2010).

    Article  Google Scholar 

  54. H.S. Lim, J.W. Oh, S.Y. Kim, M.J. Yoo, S.D. Park, and W.S. Lee, Chem. Mater. 25, 3315 (2013).

    Article  Google Scholar 

  55. S.T. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, and M. Shim, Nat. Mater. 2, 731 (2003).

    Article  Google Scholar 

  56. M. Bryning, D. Milkie, M. Islam, J. Kikkawa, and A. Yodh, Appl. Phys. Lett. 87, 161909 (2005).

    Article  Google Scholar 

  57. Y. Xu and D. Chung, Compos. Inter. 7, 243 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Disciplines Fund of Shaanxi Province (080503) and the Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices (ZSKJ201314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Wang, R., Li, Y. et al. Thermal Conductivity of Magnetically Aligned Graphene–Polymer Composites with Fe3O4-Decorated Graphene Nanosheets. J. Electron. Mater. 44, 658–666 (2015). https://doi.org/10.1007/s11664-014-3561-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3561-z

Keywords

Navigation