Skip to main content
Log in

High-Temperature Thermoelectric Properties of (1 − x) SrTiO3 − (x) La1/3NbO3 Ceramic Solid Solution

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ceramics based on SrTiO3 are of growing interest as thermoelectric materials because of their high-temperature stability and non-toxicity. Substitution of La and Nb into the perovskite structure provides opportunities to control both the microstructure and properties. Ceramic solid solutions of (1 − x) SrTiO3 − (x) La1/3NbO3 were prepared by the mixed oxide route, using compositional steps of x = 0.1. Pressed pellets were sintered at temperatures of 1573 K to 1723 K in air. Addition of aliovalent ions (La3+, Nb5+) on the A/B sites (Sr2+, Ti4+) led to A-Site cation deficiency in the stoichiometric compositions and other defect structures which increased carrier concentration. A maximum ZT of 0.004 was obtained for the x = 0.2 stoichiometric sample, although much higher ZT values are possible by sample reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Seebeck, Ueber die magnetische Polarisation der Metalle und Erze durch Temperatur-Differnz. Berlin: gedruckt in der Druckerei der Königl. Akademie der Wissenschaften. 26 cm (1825).

  2. T.M. Tritt, Annu. Rev. Mater. Res. 41, 433 (2011).

    Article  Google Scholar 

  3. D.M. Rowe and C. Chemical Rubber, CRC Handbook of Thermoelectrics [electronic resource]. Boca Raton, FL: CRC Press, 1995. 1 online resource (701).

  4. G.S. Nolas, in Materials Research Society Symposium Proceedings, November 25–30, 2012, Boston, MA, ed. by Y. Grin, D.C. Johnson, and A.J. Thompson (Warrendale: Materials Research Society, 2013), pp. xiv, 245.

  5. Y. Pei, et al., Energy Environ. Sci. 4, 2085 (2011).

    Article  Google Scholar 

  6. T. Caillat, J.P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).

    Article  Google Scholar 

  7. G.S. Nolas, et al., J. Appl. Phys. 79, 4002 (1996).

    Article  Google Scholar 

  8. J.W. Fergus, J. Eur. Ceram. Soc. 32, 525 (2012).

    Article  Google Scholar 

  9. K. Koumoto, et al., J. Am. Ceram. Soc. 96, 1 (2013).

    Article  Google Scholar 

  10. I. Terasaki, Phys. B 328, 63 (2003).

    Article  Google Scholar 

  11. K. Koumoto, I. Terasaki, and R. Funahashi, MRS Bull. 31, 206 (2006).

    Article  Google Scholar 

  12. K. Koumoto, et al., Annu. Rev. Mater. Res. 40, 363 (2010).

    Article  Google Scholar 

  13. T. Okuda et al., Phys. Rev. B 63 (2001).

  14. S. Ohta, et al., J. Appl. Phys. 97, 034106 (2005).

    Article  Google Scholar 

  15. N. Wang, et al., J. Ceram. Soc. Jpn. 118, 1098 (2010).

    Article  Google Scholar 

  16. O. Madelung, U. Rössler, and M. Schulz (ed.), SrTiO3 crystal structure, lattice parameters.

  17. A.N. Salak, et al., Appl. Phys. Lett. 93, 162903 (2008).

    Article  Google Scholar 

  18. M.I. Mendelson, J. Am. Ceram. Soc. 52, 443 (1969).

    Article  Google Scholar 

  19. W.J. Parker, et al., J. Appl. Phys. 32, 1679 (1961).

    Article  Google Scholar 

  20. R.D. Cowan, J. Appl. Phys. 34, 926 (1963).

    Article  Google Scholar 

  21. A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).

    Article  Google Scholar 

  22. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).

    Article  Google Scholar 

  23. W. Wunderlich, H. Ohta, and K. Koumoto, Phys. B 404, 2202 (2009).

    Article  Google Scholar 

  24. R.R. Heikes and R.W. Ure, Thermoelectricity: Science and Engineering (New York: Interscience Publishers, 1961), p. 576.

    Google Scholar 

  25. C. Yu, et al., Appl. Phys. Lett. 92, 092118 (2008).

    Article  Google Scholar 

  26. W. Yifeng, et al., Appl. Phys. Express 3, 031101 (2010).

    Article  Google Scholar 

  27. G.G. Yadav, et al., Nanoscale 3, 4078 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

D.S. acknowledges support of a President’s Scholarship from the University of Manchester. The SuperSTEM facilities are supported by the EPSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepanshu Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, D., Azough, F., Molinari, M. et al. High-Temperature Thermoelectric Properties of (1 − x) SrTiO3 − (x) La1/3NbO3 Ceramic Solid Solution. J. Electron. Mater. 44, 1803–1808 (2015). https://doi.org/10.1007/s11664-014-3560-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3560-0

Keywords

Navigation