Abstract
Ceramics based on SrTiO3 are of growing interest as thermoelectric materials because of their high-temperature stability and non-toxicity. Substitution of La and Nb into the perovskite structure provides opportunities to control both the microstructure and properties. Ceramic solid solutions of (1 − x) SrTiO3 − (x) La1/3NbO3 were prepared by the mixed oxide route, using compositional steps of x = 0.1. Pressed pellets were sintered at temperatures of 1573 K to 1723 K in air. Addition of aliovalent ions (La3+, Nb5+) on the A/B sites (Sr2+, Ti4+) led to A-Site cation deficiency in the stoichiometric compositions and other defect structures which increased carrier concentration. A maximum ZT of 0.004 was obtained for the x = 0.2 stoichiometric sample, although much higher ZT values are possible by sample reduction.
Similar content being viewed by others
References
T.J. Seebeck, Ueber die magnetische Polarisation der Metalle und Erze durch Temperatur-Differnz. Berlin: gedruckt in der Druckerei der Königl. Akademie der Wissenschaften. 26 cm (1825).
T.M. Tritt, Annu. Rev. Mater. Res. 41, 433 (2011).
D.M. Rowe and C. Chemical Rubber, CRC Handbook of Thermoelectrics [electronic resource]. Boca Raton, FL: CRC Press, 1995. 1 online resource (701).
G.S. Nolas, in Materials Research Society Symposium Proceedings, November 25–30, 2012, Boston, MA, ed. by Y. Grin, D.C. Johnson, and A.J. Thompson (Warrendale: Materials Research Society, 2013), pp. xiv, 245.
Y. Pei, et al., Energy Environ. Sci. 4, 2085 (2011).
T. Caillat, J.P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).
G.S. Nolas, et al., J. Appl. Phys. 79, 4002 (1996).
J.W. Fergus, J. Eur. Ceram. Soc. 32, 525 (2012).
K. Koumoto, et al., J. Am. Ceram. Soc. 96, 1 (2013).
I. Terasaki, Phys. B 328, 63 (2003).
K. Koumoto, I. Terasaki, and R. Funahashi, MRS Bull. 31, 206 (2006).
K. Koumoto, et al., Annu. Rev. Mater. Res. 40, 363 (2010).
T. Okuda et al., Phys. Rev. B 63 (2001).
S. Ohta, et al., J. Appl. Phys. 97, 034106 (2005).
N. Wang, et al., J. Ceram. Soc. Jpn. 118, 1098 (2010).
O. Madelung, U. Rössler, and M. Schulz (ed.), SrTiO3 crystal structure, lattice parameters.
A.N. Salak, et al., Appl. Phys. Lett. 93, 162903 (2008).
M.I. Mendelson, J. Am. Ceram. Soc. 52, 443 (1969).
W.J. Parker, et al., J. Appl. Phys. 32, 1679 (1961).
R.D. Cowan, J. Appl. Phys. 34, 926 (1963).
A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).
R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).
W. Wunderlich, H. Ohta, and K. Koumoto, Phys. B 404, 2202 (2009).
R.R. Heikes and R.W. Ure, Thermoelectricity: Science and Engineering (New York: Interscience Publishers, 1961), p. 576.
C. Yu, et al., Appl. Phys. Lett. 92, 092118 (2008).
W. Yifeng, et al., Appl. Phys. Express 3, 031101 (2010).
G.G. Yadav, et al., Nanoscale 3, 4078 (2011).
Acknowledgements
D.S. acknowledges support of a President’s Scholarship from the University of Manchester. The SuperSTEM facilities are supported by the EPSRC.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Srivastava, D., Azough, F., Molinari, M. et al. High-Temperature Thermoelectric Properties of (1 − x) SrTiO3 − (x) La1/3NbO3 Ceramic Solid Solution. J. Electron. Mater. 44, 1803–1808 (2015). https://doi.org/10.1007/s11664-014-3560-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-014-3560-0