Skip to main content

Effect of an Al2O3/TiO2 Passivation Layer on the Performance of Amorphous Zinc–Tin Oxide Thin-Film Transistors

The effect of an Al2O3/TiO2 stacked passivation layer on the performance of amorphous ZnSnO (a-ZTO) thin-film transistors (TFTs) was investigated by comparing field-effect mobility (μ FE) and subthreshold swing after passivation layer deposition. The values observed were 4.7 cm2/Vs and 0.64 V/decade, respectively, for uncoated TFTs and 4.6 cm2/Vs and 0.62 V/decade for passivated TFTs. In addition, excellent water vapor transmission was observed for electron beam-irradiated Al2O3/TiO2-passivated poly(ether sulfone) substrates in a humidity test, because the Al2O3/TiO2 passivation layer can enhance the interface properties between Al2O3 and TiO2. To investigate the origin of this enhancement, we performed x-ray photoelectron spectroscopy of both unpassivated and Al2O3/TiO2-passivated TFTs with a-ZTO back-channel layers after Ar annealing.

This is a preview of subscription content, access via your institution.

References

  1. P. Barquinha, P. Ferreira, L. Pereira, G. Goncalves, and E. Fortunato, J. Appl. Phys. 101, 044505 (2007).

    Article  Google Scholar 

  2. K.B. Park, J.B. Seon, G.H. Kim, M. Yang, B. Koo, H.J. Kim, M.K. Ryu, and S.Y. Lee, IEEE Electron Dev. Lett. 31, 311 (2010).

    Article  Google Scholar 

  3. Y.S. Rim, D.L. Kim, W.H. Jeong, and H.J. Kim, Electrochem. Solid-State Lett. 15, H37 (2012).

    Article  Google Scholar 

  4. P.K. Nayak, M.N. Hedhill, D. Cha, and H.N. Alshareef, ACS Appl. Mater. Interfaces. 5, 3587 (2013).

    Article  Google Scholar 

  5. J. Lee, D. Kim, D. Yang, S. Hong, K. Yoon, P. Hong, C. Jeong, H. Park, S.Y. Kim, and S.L. Lim, Proceedings of the SID’08 Digest (2008), p. 625.

  6. J.K. Jeong, J.H. Jeong, H.W. Yang, T.K. Ahn, M. Kim, K.S. Kim, B.S. Gu, H.-J. Chung, J.-S. Park, and Y.-G. Mo, J. Soc. Inf. Disp. 17, 95 (2009).

    Article  Google Scholar 

  7. E. Chong, Y.W. Jeon, Y.S. Chun, D.H. Kim, and S.Y. Lee, Thin Solid Films 519, 4347 (2011).

    Article  Google Scholar 

  8. C.W. Han, K.M. Kim, S.J. Bae, H.S. Choi, J.M. Lee, T.S. Kim, Y.H. Tak, S.Y. Cha, and B.C. Ahn, SID Int. Symp. Digest Tech. Papers (2012), p. 279.

  9. J.K. Jeong, H.W. Yang, J.H. Jeong, Y.-G. Mo, and H.D. Kim, Appl. Phys. Lett. 93, 123508 (2008).

    Article  Google Scholar 

  10. J.-S. Park, J.K. Jeong, H.-J. Chung, Y.-G. Mo, and H.D. Kim, Appl. Phys. Lett. 92, 072104 (2008).

    Article  Google Scholar 

  11. P.E. Burrows, V. Bulovic, S.R. Forrest, L.S. Sapochack, D.M. McCarty, and M.E. Thompson, Appl. Phys. Lett. 65, 2922 (1994).

    Article  Google Scholar 

  12. M. Fakhri, N. Babin, A. Behrendt, T. Jakob, P. Görrn, and T. Riedl, Adv. Mater. 25, 2821 (2013).

    Article  Google Scholar 

  13. S.-M. Seo, C.-H. Jang, and J.-H. Park, Org. Electron. 9, 899 (2008).

    Article  Google Scholar 

  14. M. Kim, J.H. Jeong, H.J. Lee, T.K. Ahn, H.S. Shin, J.-S. Park, J.K. Jeong, Y.-G. Mo, and H.D. Kim, Appl. Phys. Lett. 90, 212114 (2007).

    Article  Google Scholar 

  15. Y. Liu, H. Wang, and K. Radhakrishman, Thin Solid Films 515, 4387 (2007).

    Article  Google Scholar 

  16. M.D. Groner, S.M. George, R.S. McLean, and P.F. Carcia, Appl. Phys. Lett. 88, 051907 (2006).

    Article  Google Scholar 

  17. X.G. Hou and A.D. Liu, Rad. Phys. Chem. 77, 345 (2008).

    Article  Google Scholar 

  18. J. Chen, M. Czayka, and R.M. Uribe, Rad. Phys. Chem. 74, 31 (2005).

    Article  Google Scholar 

  19. W. Wu, W.E. Wallace, E.K. Lin, G.W. Lynn, C.J. Glinka, E.T. Ryan, and H. Ho, J. Appl. Phys. 87, 1193 (2000).

    Article  Google Scholar 

  20. W.S. Kim, M.-G. Ko, T.-S. Kim, S.-K. Park, Y.-K. Moon, S.-H. Lee, J.-G. Park, and J.-W. Park, J. Nanosci. Nanotechnol. 8, 4726 (2008).

    Article  Google Scholar 

  21. J. Meyer, H. Schmidt, W. Kowalsky, T. Riedl, and A. Kahn, Appl. Phys. Lett. 96, 243308 (2010).

    Article  Google Scholar 

  22. C. Zhao, O. Richard, H. Bender, M. Caymax, S. De Gendt, M. Heyns, E. Young, G. Roebben, O. Van Der Biest, and S. Haukka, Appl. Phys. Lett. 80, 2374 (2002).

    Article  Google Scholar 

  23. Y.-S. Kim and C.H. Park, Phys. Rev. Lett. 102, 086403 (2009).

    Article  Google Scholar 

  24. M.K. Ryu, S. Yang, S.-H. Ko Park, C.-S. Hwang, and J.K. Jeong, Appl. Phys. Lett. 95, 072104 (2009).

    Article  Google Scholar 

  25. D.W. Greve, Field Effect Devices and Application: Devices for Portable, Low power, and Imaging Systems, 1st ed. (Englewood Cliffs: Prentice-Hall, 1998).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2012M2B2A4029342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Wan Park.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, DS., Park, JH., Kang, MS. et al. Effect of an Al2O3/TiO2 Passivation Layer on the Performance of Amorphous Zinc–Tin Oxide Thin-Film Transistors. J. Electron. Mater. 44, 651–657 (2015). https://doi.org/10.1007/s11664-014-3554-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3554-y

Keywords

  • Amorphous oxide semiconductor
  • zinc-tin-oxide (ZTO)
  • Al2O3/TiO2
  • passivation layer
  • electron beam irradiation