Journal of Electronic Materials

, Volume 44, Issue 2, pp 682–687 | Cite as

Conductive ZnO:Zn Composites for High-Rate Sputtering Deposition of ZnO Thin Films

  • Li Qin Zhou
  • Mukul Dubey
  • Raul Simões
  • Qi Hua FanEmail author
  • Victor NetoEmail author


We report an electrically conductive composite prepared by sintering ZnO and metallic Zn powders. Microstructure analysis combined with electrical conductivity studies indicated that when the proportion of metallic Zn reached a threshold (∼20 wt.%), a metal matrix was formed in accordance with percolation theory. This composite has potential as a sputtering target for deposition of high-quality ZnO. Use of the ZnO:Zn composite completely eliminates target poisoning effects in reactive sputtering of the metal, and enables deposition of thin ZnO films at rates much higher than those obtained by sputtering of pure ZnO ceramic targets. The optical transmittance of the ZnO films prepared by use of this composite is comparable with that of films produced by radio frequency sputtering of pure ZnO ceramic targets. The sputtering characteristics of the conductive ZnO:Zn composite target are reported, and possible mechanisms of the high rate of deposition are also discussed.


Thin Film sputter zinc oxide composite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful for support from FCT Portugal, grant nos PTDC/CTM-CER/121440/2010 and PEst-C/EME/UI0481/2013. The contents of this paper are also based on work supported by the National Science Foundation/EPSCoR, grant no. 0903804, and by the State of South Dakota. This research was partly supported by National Science Foundation grant nos 1248454 and 1248970, and a South Dakota BOR PIF Grant.


  1. 1.
    Ü. ÖzgÜr, Ya I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
  2. 2.
    J.R. Williams, H. Furukawa, Y. Adachi, S. Grachev, E. Søndergård, and N. Ohashi, Appl. Phys. Lett. 103, 042107 (2013).CrossRefGoogle Scholar
  3. 3.
    F. Stavale, L. Pascua, N. Nilius, and H.-J. Freund, J. Phys. Chem. C 117, 10552 (2013).CrossRefGoogle Scholar
  4. 4.
    T. Li, T.S. Herng, H.K. Liang, N.N. Bao, T.P. Chen, J.I. Wong, J.M. Xue, and J. Ding, J. Phys. D 45, 185102 (2012).CrossRefGoogle Scholar
  5. 5.
    P. Zhan, W. Wang, C. Liu, Y. Hu, Z. Li, Z. Zhang, P. Zhang, B. Wang, and X. Cao, J. Appl. Phys. 111, 033501 (2012).CrossRefGoogle Scholar
  6. 6.
    Y.Q. Fu, J.K. Luo, X.Y. Du, A.J. Flewitt, Y. Li, G.H. Mark, A.J. Walton, and W.I. Milne, Sensors and Actuators B 143, 606 (2010).CrossRefGoogle Scholar
  7. 7.
    T. Hirao, M. Furuta, H. Furuta, T. Matsuda, T. Hiramatsu, H. Hokari, M. Yoshida, H. Ishii, and M. Kakegawa, J. Soc. Information Display 15, 17 (2007).CrossRefGoogle Scholar
  8. 8.
    I.-D. Kim, Y.W. Choi, and H.L. Tuller, Appl. Phys. Lett. 87, 043509 (2005).CrossRefGoogle Scholar
  9. 9.
    E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Gonçalves, A.J.S. Marques, R.F.P. Martins, and L.M.N. Pereira, Appl. Phys. Lett. 85, 2541 (2004).CrossRefGoogle Scholar
  10. 10.
    V.A. Fonoberov and A.A. Balandin, J. Phys.: Condens. Matter 17, 1085 (2005).Google Scholar
  11. 11.
    J.A. Anna Selvana, A. Delahoy, S. Guo, and Y.M. Li, Sol Energ Mat Sol C 90, 3371 (2006).CrossRefGoogle Scholar
  12. 12.
    S. Park, S.J. Tark, J.S. Lee, H. Lim, and D. Kim, Sol. Energy Mater. Sol. Cells 93, 1020 (2009).CrossRefGoogle Scholar
  13. 13.
    B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, and S. Guha, Prog. Photovoltaics Res. Appl. 21, 72 (2013).CrossRefGoogle Scholar
  14. 14.
    A. Compaan, Sol. Energy Mater. Sol. Cells 90, 2170 (2006).CrossRefGoogle Scholar
  15. 15.
    H.-Y. Lee, S.-D. Xia, W.-P. Zhang, L.-R. Lou, J.-T. Yan, and C.-T. Lee, J. Appl. Phys. 108, 073119 (2010).CrossRefGoogle Scholar
  16. 16.
    C.-Y. Yen, S.-R. Jian, G.-J. Chen, C.-M. Lin, H.-Y. Lee, W.-C. Ke, Y.-Y. Liao, C.-T. Wang, P.-F. Yang, Y.-S. Lai, S.-C. Jang Jason, and J.-Y. Juan, Appl. Surf. Sci. 257, 7900 (2011).CrossRefGoogle Scholar
  17. 17.
    T.R.B. Foong, S.P. Singh, P. Sonar, Z.-E. Ooi, K.L. Chan, and A. Dodabalapur, J. Mater. Chem. 22, 20896 (2012).CrossRefGoogle Scholar
  18. 18.
    L. García-Gancedo, J. Pedrós, Z. Zhu, A.J. Flewitt, W.I. Milne, J.K. Luo, and C.J.B. Ford, J. Appl. Phys. 112, 014907 (2012).CrossRefGoogle Scholar
  19. 19.
    K. Ellmer, J. Phys. D Appl. Phys. 33, R17 (2000).CrossRefGoogle Scholar
  20. 20.
    K. Ellmer, J. Phys. D Appl. Phys. 34, 3097 (2001).CrossRefGoogle Scholar
  21. 21.
    D.S. McLachlan, M. Blaszkiewicz, and R.E. Newnham, J. Am. Ceram. Soc. 73, 2187 (1990).CrossRefGoogle Scholar
  22. 22.
    S. Sarkar and D. Basak, Chem. Phys. Lett. 516, 192 (2011).CrossRefGoogle Scholar
  23. 23.
    A. Bera, T. Ghosh, and D. Basak, Appl. Mater. Interfaces 2, 2898 (2010).CrossRefGoogle Scholar
  24. 24.
    K.H. Yoon, J.-W. Choi, and D.-H. Lee, Thin Solid Films 302, 116 (1997).CrossRefGoogle Scholar
  25. 25.
    T. Tsuji and M. Hirohashi, Appl. Surf. Sci. 157, 47 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  1. 1.Centre for Mechanical Technology and AutomationDepartment of Mechanical Engineering University of AveiroAveiroPortugal
  2. 2.Aveiro Nanotechnology InstituteUniversity of AveiroAveiroPortugal
  3. 3.Department of Electrical Engineering and Computer ScienceSouth Dakota State UniversityBrookingsUSA

Personalised recommendations