Skip to main content
Log in

High Throughput Screening Tools for Thermoelectric Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A suite of complementary high-throughput screening systems for combinatorial films was developed at National Institute of Standards and Technology to facilitate the search for efficient thermoelectric materials. These custom-designed capabilities include a facility for combinatorial thin film synthesis and a suite of tools for screening the Seebeck coefficient, electrical resistance (electrical resistivity), and thermal effusivity (thermal conductivity) of these films. The Seebeck coefficient and resistance are measured via custom-built automated apparatus at both ambient and high temperatures. Thermal effusivity is measured using a frequency domain thermoreflectance technique. This paper will discuss applications using these tools on representative thermoelectric materials, including combinatorial composition-spread films, conventional films, single crystals, and ribbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer, 2001).

    Book  Google Scholar 

  2. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  Google Scholar 

  3. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    Article  Google Scholar 

  4. L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, and G. Tan, et al., Nature 508, 7496 (2014).

    Article  Google Scholar 

  5. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B.O. Quinn, Nature 413, 597 (2001).

    Article  Google Scholar 

  6. Y. Hasegawa, Y. Ishikawa, T. Komine, T.E. Huber, A. Suzuki, H. Morita, and H. Shirai, Appl. Phys. Lett. 85, 917 (2004).

    Article  Google Scholar 

  7. R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, and H. Lam, ACS Comb. Sci. 13, 579 (2011).

    Article  Google Scholar 

  8. H. Koinuma, H.N. Aiyer, and Y. Matsumoto, Sci. Tech Adv Mater. 1, 1 (2000).

    Article  Google Scholar 

  9. W. Wong-Ng, J. NIST Res. (2012). doi:10.6028/jres.117.018.

    Google Scholar 

  10. R.B. Van Dover, L.F. Schneemeyer, and R.M. Fleming, Nature 392, 162 (1998).

    Article  Google Scholar 

  11. T. Fukumura, M. Ohtani, M. Kawasaki, Y. Okimoto, T. Kageyama, T. Koida, T. Hasegawa, Y. Tokura, and H. Koinuma, Appl. Phys. Lett. 77, 3426 (2000).

    Article  Google Scholar 

  12. H.M. Christen, S.D. Silliman, and K.S. Harchavardhan, Rev. Sci. Instrum. 72, 2673 (2001).

    Article  Google Scholar 

  13. M. Otani, N.D. Lowhorn, P.K. Schenck, W. Wong-Ng, and M. Green, Appl. Phys. Lett. 91, 132102 (2007).

    Article  Google Scholar 

  14. M. Otani, K. Itaka, W. Wong-Ng, P.K. Schenck, and H. Koinuma, Appl. Surf. Sci. 254, 765 (2007).

    Article  Google Scholar 

  15. Y.G. Yan, W. Wong-Ng, J. Martin, M. Green, and X.F. Tang, Rev. Sci. Instrum. 84, 115110 (2013).

    Article  Google Scholar 

  16. J. Martin, Sci. Technol. 24, 085601 (2013).

    Google Scholar 

  17. L.J. van der Pauw, Philips Tech. Rev. 20, 220 (1958).

    Google Scholar 

  18. B.C. Sales, Science 272, 1325 (1996).

    Article  Google Scholar 

  19. S. Li, R. Funahashi, I. Matsubara, H. Yamada, K. Ueno, and S. Sodeoka, Ceram. Int. 27, 321 (2001).

    Article  Google Scholar 

  20. W. Wong-Ng, Y.F. Hu, M.D. Vaudin, B. He, M. Otani, N.D. Lowhorn, and Q. Li, J. Appl. Phys. 102, 33520 (2007).

    Article  Google Scholar 

  21. Y. Wang, Y. Sui, P. Ren, L. Wang, X. Wang, W. Su, and H.J. Fan, Inorg. Chem. 49, 3216 (2010).

    Article  Google Scholar 

  22. R. Robert, L. Bocher, M. Trottmann, A. Reller, and A. Weidenkaff, J. Solid State Chem. 179, 3893 (2006).

    Article  Google Scholar 

  23. C.A. Hewitt, A.B. Kaiser, S. Roth, M. Craps, R. Czerw, and D.L. Carroll, Nano Lett. 12, 1307 (2012).

    Article  Google Scholar 

  24. N.D. Lowhorn, W. Wong-Ng, Z.Q. Lu, J. Martin, M.L. Green, J.E. Bonevich, E.L. Thomas, N.R. Dilley, and J. Sharp, J. Mater. Res. 26, 1983 (2011).

    Article  Google Scholar 

  25. S. Nakajima, J. Phys. Chem. Solids 24, 479 (1963).

    Article  Google Scholar 

  26. C. Kittel, Solid State Physics, 2nd ed. (New York: Wiley, 1956), p. 296.

    Google Scholar 

  27. W. Wong-Ng, P. Zalvis, H.L. Joress, J. Martin, Y. Yan, and J. Yang, Appl. Phys. Lett. 100, 082107 (2012).

    Article  Google Scholar 

  28. Y. Yan, W. Wong-Ng, J.A. Kaduk, G. Tan, W. Xie, and X. Tang, Appl. Phys. Lett. 98, 142106 (2011).

    Article  Google Scholar 

  29. M. Otani, E. Thomas, W. Wong-Ng, P.K. Schenck, K.-S. Chang, N.D. Lowhorn, M.L. Green, and H. Ohguchi, Jpn. J. Appl. Phys. 48, 05EB02 (2009).

    Google Scholar 

  30. W. Wong-Ng, H. Joress, J. Martin, Y. Yan, J. Yang, M. Otani, E.L. Thomas, M.L. Green, and J. Hattrick-Simpers, Advances and Applications in Electroceramics: Ceramics Transaction, vol. 226, ed. K.M. Nair, Q. Jia, and S. Priya, (Hoboken: Wiley, 2011), p. 173

  31. D.G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004).

    Article  Google Scholar 

  32. W. Wong-Ng, L.P. Cook, C.K. Chiang, L. Swartzendruber, L.H. Bennett, J.E. Blendell, and D. Minor, J. Mater. Res. 3, 832 (1988).

    Article  Google Scholar 

  33. S. Block, G. Pieramini, R. Munro, and W. Wong-Ng, Ceramic Superconductors, W. J. Smothers, ed., Adv. Ceram. Mater., 2(3B) (Westerville, OH: American Ceramics Society, 1987), p. 601

  34. T. Yagi, N. Taketoshi, and H. Kato, Phys. C 412–414, 1337 (2004).

    Article  Google Scholar 

  35. R. Hull, eds., Properties of Crystalline Silicon (London: INSPEC, The Institution of Electrical Engineers, 1999), p. 165

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wong-Ng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong-Ng, W., Yan, Y., Otani, M. et al. High Throughput Screening Tools for Thermoelectric Materials. J. Electron. Mater. 44, 1688–1696 (2015). https://doi.org/10.1007/s11664-014-3519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3519-1

Keywords

Navigation