Skip to main content

YbCu2Si2–LaCu2Si2 Solid Solutions with Enhanced Thermoelectric Power Factors


Cryogenic Peltier coolers are ideal for cooling infrared sensors on satellites. To make these thermoelectric devices a realistic option for this application, the efficiency of thermoelectric materials at cryogenic temperatures must be substantially enhanced. Intermediate valence Yb-based compounds have large peaks in the Seebeck coefficient at low temperatures; to optimize these materials this must be understood. We created solid solutions between the intermediate valence compound YbCu2Si2 and an isostructural compound LaCu2Si2 to manipulate the temperature at which the Seebeck coefficient peaks and to maximize zT by reduction of lattice thermal conductivity. An enormous power factor of 110 μW/cm K2 at 100 K and a maximum zT of 0.14 at 125 K were achieved for one of these solid solutions.

This is a preview of subscription content, access via your institution.


  1. G. Mahan, B. Sales, and J. Sharp, Phys. Today 50, 42 (1997).

    Article  Google Scholar 

  2. V. Zlatić and R. Monnier, Phys. Rev. B 71, 165109 (2005).

    Article  Google Scholar 

  3. N. Oeschler, N. Oeschler, et al., Properties and Applications of Thermoelectric Materials, ed. V. Zlatić and A.C. Hewson (Netherlands: Springer, 2009), p. 81.

    Chapter  Google Scholar 

  4. V. Zlatić, et al., Phys. Rev. B 68, 104432 (2003).

    Article  Google Scholar 

  5. M.B. Maple, L.E. DeLong, and B.C. Sales, Handbook on the Physics and Chemistry of Rare Earths, Vol. 1, ed. K.A. Gschneidner and L. Eyring (Amsterdam: Elsevier, 1978), p. 797.

    Google Scholar 

  6. G.J. Lehr, D.T. Morelli, H. Jin, and J.P. Heremans, J. Appl. Phys. 114, 223712 (2013).

    Article  Google Scholar 

  7. K. Alami-Yadri, H. Wilhelm, and D. Jaccard, Phys. B Condens. Matter 259–261, 157 (1999).

  8. G. Neumann, et al., Z. Für Phys. B Condens. Matter 59, 133 (1985).

    Article  Google Scholar 

  9. J.M. Lawrence, G.H. Kwei, P.C. Canfield, J.G. Dewitt, and A.C. Lawson, Phys. Rev. B 49, 1627 (1994).

    Article  Google Scholar 

  10. A. Grytsiv, D. Kaczorowski, V.H. Tran, A. Leithe-Jasper, and P. Rogl, J. Alloys Compd. 504, 1 (2010).

    Article  Google Scholar 

  11. Dung, N. D. et al. J. Phys. Soc. Jpn. 78, 084711 (2009)

  12. W. Franz, A. Grießel, F. Steglich, and D. Wohlleben, Z. Für Phys. B Condens. Matter 31, 7 (1978).

    Google Scholar 

  13. K. Alami-Yadri and D. Jaccard, Solid State Commun. 100, 385 (1996).

    Article  Google Scholar 

  14. N. Tsujii, H. Kitazawa, T. Aoyagi, T. Kimura, and G. Kido, J. Magn. Magn. Mater. 310, 349 (2007).

    Article  Google Scholar 

  15. D.M. Rowe, V.L. Kuznetsov, L.A. Kuznetsova, and G. Min, J. Phys. Appl. Phys. 35, 2183 (2002).

    Article  Google Scholar 

  16. G.J. Lehr and D.T. Morelli, Intermetallics 32, 225 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gloria J. Lehr.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lehr, G.J., Morelli, D.T., Jin, H. et al. YbCu2Si2–LaCu2Si2 Solid Solutions with Enhanced Thermoelectric Power Factors. J. Electron. Mater. 44, 1663–1667 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • YbCu2Si2
  • intermediate valence
  • thermoelectric properties
  • solid solutions