Journal of Electronic Materials

, Volume 44, Issue 1, pp 188–193 | Cite as

Growth of InN and In-Rich InGaN Layers on GaN Templates by Pulsed Metalorganic Chemical Vapor Deposition

  • A. Kadys
  • T. Malinauskas
  • T. Grinys
  • M. Dmukauskas
  • J. Mickevičius
  • J. Aleknavičius
  • R. Tomašiūnas
  • A. Selskis
  • R. Kondrotas
  • S. Stanionytė
  • H. Lugauer
  • M. Strassburg
Article

Abstract

InN and In-rich InGaN layers have been grown on GaN templates using the pulsed metalorganic chemical vapor deposition (MOCVD) technique and compared with analogous layers grown by conventional MOCVD. Structural investigations were performed using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Surface morphology was studied using atomic force microscopy. Electrical and optical properties were studied using Hall measurements and photoluminescence (PL) spectroscopy. All layers were free of metal droplets. InN grown using pulsed MOCVD showed fairly low background electron concentration (ne = 8 × 1018 cm−3 to 9 × 1018 cm−3) and high electron mobility (μe = 644 cm2 V−1 s−1). Structural studies revealed increase of size (from 100 nm to 500 nm) and decrease of density of InN islands at higher growth temperatures. For In-rich InGaN layers (In content 68% and 80%) the density of islands was similar to that in InN, while the diameter varied from 50 nm to 150 nm. Inhomogeneities of In and Ga distribution in the layers resulting in broadened XRD lines and PL bands are discussed.

Keywords

Group III nitrides InN InGaN MOCVD pulsed growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).CrossRefGoogle Scholar
  2. 2.
    J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager, S.X. Li, E.E. Haller, H. Lu, and W.J. Schaff, J. Appl. Phys. 94, 4457 (2003).CrossRefGoogle Scholar
  3. 3.
    J. Wu, J. Appl. Phys. 106, 011101(1) (2009).Google Scholar
  4. 4.
    R.S.Q. Fareed, R. Jain, R. Gaska, M.S. Shur, J. Wu, W. Walukiewicz, and M.A. Khan, Appl. Phys. Lett. 84, 1892 (2004).CrossRefGoogle Scholar
  5. 5.
    O. Ambacher, M.S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R.A. Fischer, A. Miehr, A. Bergmaier, and G. Dollinger, J. Vac. Sci. Technol. B 14, 3532 (1996).CrossRefGoogle Scholar
  6. 6.
    N. Dietz, M. Strassburg, and V. Woods, J. Vac. Sci. Technol. A 23, 1221 (2005).CrossRefGoogle Scholar
  7. 7.
    N. Dietz, M. Alevli, V. Woods, M. Strassburg, H. Kang, and I.T. Ferguson, Phys. Status Solidi B 242, 2985 (2005).CrossRefGoogle Scholar
  8. 8.
    W. Maleyre, O. Briot, and S. Ruffenach, J. Cryst. Growth 269, 15 (2004).CrossRefGoogle Scholar
  9. 9.
    M. Jamil, R.A. Arif, Y.K. Ee, H. Tong, J.B. Higgins, and N. Tansu, Phys. Status Solidi A 205, 1619 (2008).CrossRefGoogle Scholar
  10. 10.
    M.C. Johnson, S.L. Konsek, A. Zettl, and E.D. Bourret-Courchesne, J. Cryst. Growth 272, 400 (2004).CrossRefGoogle Scholar
  11. 11.
    M. Jamil, H. Zhao, J.B. Higgins, and H. Tansu, Phys. Status Solidi A 205, 2886 (2008).CrossRefGoogle Scholar
  12. 12.
    M. Moseley, B. Gunning, J. Greenlee, J. Lowder, G. Namkoong, and W.A. Doolittle, J. Appl. Phys. 112, 014909(1) (2012).CrossRefGoogle Scholar
  13. 13.
    V. Woods and N. Dietz, Mater. Sci. Eng. B Adv. 127, 239 (2006).CrossRefGoogle Scholar
  14. 14.
    A. Kadir, S. Mukhopadhyay, T. Ganguli, Ch Galande, M.R. Gokhale, B.M. Arora, P. Raychaudhuri, and A. Bhattacharya, Solid State Commun. 146, 361 (2008).CrossRefGoogle Scholar
  15. 15.
    VYu Davydov, A.A. Klochikhin, R.P. Seisyan, V.V. Emtsev, S.V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A.V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Status Solidi B 229, R1 (2002).CrossRefGoogle Scholar
  16. 16.
    B.N. Pantha, J. Li, J.Y. Lin, and H.X. Jiang, Appl. Phys. Lett. 93, 182107(1) (2008).CrossRefGoogle Scholar
  17. 17.
    VYu Davydov, A.A. Klochikhin, V.V. Emtsev, S.V. Ivanov, V.V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A.V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E.E. Haller, Phys. Status Solidi B 230, R4 (2002).CrossRefGoogle Scholar
  18. 18.
    G. Feuillet, B. Daudin, F. Widmann, J.L. Rouviere, and M. Arlery, J. Cryst. Growth 189, 142 (1998).CrossRefGoogle Scholar
  19. 19.
    Y.F. Ng, Y.G. Cao, M.H. Xie, X.L. Wang, and S.Y. Tong, Appl. Phys. Lett. 81, 3960 (2002).CrossRefGoogle Scholar
  20. 20.
    I. Daruka and A.L. Barabasi, Phys. Rev. Lett. 79, 3708 (1997).CrossRefGoogle Scholar
  21. 21.
    H. Wang, D.S. Jiang, J.J. Zhu, D.G. Zhao, Z.S. Liu, Y.T. Wang, S.M. Zhang, and H. Yang, Semicond. Sci. Technol. 24, 055001(1) (2009).Google Scholar
  22. 22.
    M. Jamil, H. Zhao, J.B. Higgins, and N. Tansu, J. Cryst. Growth 310, 4947 (2008).CrossRefGoogle Scholar
  23. 23.
    C. Yang, X. Wang, H. Xiao, X. Zhang, G. Hu, J. Ran, C. Wang, J. Li, J. Li, and Z. Wang, Appl. Surf. Sci. 255, 3149 (2008).CrossRefGoogle Scholar
  24. 24.
    G.T. Thaler, D.D. Koleske, S.R. Lee, K.H.A. Bogart, and M.H. Crawford, J. Cryst. Growth 312, 1817 (2010).CrossRefGoogle Scholar
  25. 25.
    G. Koblmuller, C.S. Gallinat, and J.S. Speck, J. Appl. Phys. 101, 083516(1) (2007).CrossRefGoogle Scholar
  26. 26.
    G.B. Stringfellow, J. Cryst. Growth 312, 735 (2010).CrossRefGoogle Scholar
  27. 27.
    F.A. Ponce, S. Srinivasan, A. Bell, K. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, Phys. Status Solidi B 240, 273 (2003).CrossRefGoogle Scholar
  28. 28.
    S.Y. Karpov, MRS Internet J. Nitride Semicond. Res. 3, 16 (1998).CrossRefGoogle Scholar
  29. 29.
    J. Neugebauer, Phys. Status Solidi C 6, 1651 (2003).CrossRefGoogle Scholar
  30. 30.
    S. Choi, T.H. Kim, S. Wolter, A. Brown, H.O. Everitt, M. Losurdo, and G. Bruno, Phys. Rev. Lett. B 77, 115435(1) (2008).Google Scholar
  31. 31.
    H. Chen, R.M. Feenstra, J.E. Northrup, T. Zywietz, and J. Neugebauer, Phys. Rev. Lett. 85, 1902 (2000).CrossRefGoogle Scholar

Copyright information

© European Union 2014

Authors and Affiliations

  • A. Kadys
    • 1
  • T. Malinauskas
    • 1
  • T. Grinys
    • 1
  • M. Dmukauskas
    • 1
  • J. Mickevičius
    • 1
    • 2
  • J. Aleknavičius
    • 1
    • 2
  • R. Tomašiūnas
    • 1
  • A. Selskis
    • 3
  • R. Kondrotas
    • 3
  • S. Stanionytė
    • 1
    • 3
  • H. Lugauer
    • 4
  • M. Strassburg
    • 4
  1. 1.Institute of Applied ResearchVilnius UniversityVilniusLithuania
  2. 2.Semiconductor Physics Department, Faculty of PhysicsVilnius UniversityVilniusLithuania
  3. 3.Department of Characterization of Materials Structure, Institute of ChemistryCentre for Physical Sciences and TechnologyVilniusLithuania
  4. 4.OSRAM Opto Semiconductors GmbHRegensburgGermany

Personalised recommendations