Skip to main content
Log in

Preparation, Characterization, and Ionic Transport Properties of Nanoscale Ln2Zr2O7 (Ln = Ce, Pr, Nd, Sm, Gd, Dy, Er, and Yb) Energy Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanoparticles of lanthanide (Ln)-based zirconates have been prepared through the autoignited combustion technique. The structure of the system was analyzed by powder x-ray diffraction and vibrational spectroscopic tools. The compounds with Ln = Ce, Pr, Nd, Sm, and Gd have pyrochlore cubic structure, whereas those with Ln = Dy, Er, and Yb possess anion-deficient disordered cubic fluorite structure. The optical properties of the powder were analyzed using ultraviolet–visible spectroscopy. Pellets of the compounds were sintered in the range from 1325°C to 1530°C for 2 h. The surface morphology of sintered Nd2Zr2O7 was analyzed by scanning electron microscopy. Impedance spectroscopic studies of the samples were carried out at different temperatures. The conductivity increased to the order of 10−2 S/m at 750°C, and the highest conductivity of 13.21 × 10−2 S/m was obtained for Er2Zr2O7. All samples of this system are suitable candidates for fabrication of electrolytes for use in solid oxide fuel cells, particularly at moderate temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.G. Liu, J.H. Ouyang, K.N. Sun, and Y. Zhou, Ceram. Int. 38, 2935 (2012).

    Article  Google Scholar 

  2. L.C. Wen, H.Y. Hsieh, Y.H. Lee, S.C. Chang, H.C.I. Kao, H.S. Sheu, I.N. Lin, J.C. Chang, M.C. Lee, and Y.S. Lee, Solid State Ion. 206, 39 (2012).

    Article  Google Scholar 

  3. Z.G. Liu, J.H. Ouyang, Y. Zhou, J. Xiang, and X.M. Liu, Mater. Des. 32, 4201 (2011).

    Article  Google Scholar 

  4. J. Wang, F. Zhang, J. Lian, R.C. Ewing, and U. Becker, Acta Mater. 59, 1607 (2011).

    Article  Google Scholar 

  5. E.J. Harvey, K.R. Whittle, G.R. Lumpkin, R.I. Smith, and S.A.T. Redfern, J. Solid State Chem. 178, 800 (2005).

    Article  Google Scholar 

  6. W.E. Klee and G. Weitz, J. Inorg. Nucl. Chem. 31, 2367 (1969).

    Article  Google Scholar 

  7. K.V. Govindan Kutty, C.K. Mathews, T.N. Rao, and U.V. Varadaraju, Solid State Ion. 80, 99 (1995).

    Article  Google Scholar 

  8. S. Moll, G. Sattonnay, L. Thomé, J. Jagielski, C. Legros, and I. Monnet, Nucl. Instrum. Methods B 268, 2933 (2010).

    Article  Google Scholar 

  9. B.P. Mandal, M. Pandey, and A.K. Tyagi, J. Nucl. Mater. 406, 238 (2010).

    Article  Google Scholar 

  10. B.P. Mandal, N. Garg, S.M. Sharma, and A.K. Tyagi, J. Nucl. Mater. 392, 95 (2009).

    Article  Google Scholar 

  11. G. Sattonnay, S. Moll, L. Thome, C. Legros, M. Herbst-Ghysel, F. Garrido, J.M. Costantini, and C. Trautmann, Nucl. Instrum. Methods B. 266, 3043 (2008).

    Article  Google Scholar 

  12. M. Lang, F. Zhang, J. Zhang, J. Wang, J. Lian, W.J. Weber, B. Schuster, C. Trautmann, R. Neumann, and R.C. Ewing, Nucl. Instrum. Methods B. 268, 2951 (2010).

    Article  Google Scholar 

  13. J.A. Kilner and R.J. Brook, Solid State Ion. 6, 237 (1982).

    Article  Google Scholar 

  14. A.V. Shlyakhtina and L.G. Shcherbakova, Solid State Ion. 192, 200 (2011).

    Article  Google Scholar 

  15. J. Lian, L. Wang, J. Chen, K. Sun, R.C. Ewing, J.M. Farmer, and L.A. Boatner, Acta Mater. 51, 1493 (2003).

    Article  Google Scholar 

  16. H. Yamamura, H. Nishino, K. Kakinuma, and K. Nomura, Solid State Ion. 158, 359 (2003).

    Article  Google Scholar 

  17. A.V. Shlyakhtina, A.V. Knotko, M.V. Boguslavskii, S.Yu. Stefanovich, I.V. Kolbanev, L.L. Larina, and L.G. Shcherbakova, Solid State Ion. 178, 59 (2007).

    Article  Google Scholar 

  18. P.J. Wilde and C.R.A. Catlow, Solid State Ion. 112, 173 (1998).

    Article  Google Scholar 

  19. B.P. Mandal, P.S.R. Krishna, and A.K. Tyagi, J. Solid State Chem. 183, 41 (2010).

    Article  Google Scholar 

  20. H. Morisaka, T. Tant, H. Kaga, and K. Takatori, J. Ceram. Soc. Jpn. 112, 514 (2004).

    Article  Google Scholar 

  21. F.N. Sayed, V. Grover, K. Bhattacharyya, D. Jain, A. Arya, C.G.S. Pillai, and A.K. Tyagi, Inorg. Chem. 50, 2354 (2011).

    Article  Google Scholar 

  22. D.B. Dhwajam, J.K. Thomas, K. Joy, and S. Solomon, J. Mater. Sci. 22, 384 (2011).

    Google Scholar 

  23. A.S. Deepa, S. Vidya, P.C. Manu, S. Solomon, A. John, and J.K. Thomas, J. Alloys Compd. 509, 1830 (2011).

    Article  Google Scholar 

  24. H. Gleiter, Acta Mater. 48, 1 (2000).

    Article  Google Scholar 

  25. C.P. Cameron and R. Raj, J. Am. Ceram. Soc. 71, 1031 (1988).

    Article  Google Scholar 

  26. V.V. Skorokhod and A.V. Ragulya, Features of Nanocrystalline Structure Formation on Sintering of Ultra-Fine Powders (The Netherlands: Kluwer Academic, 1998).

    Google Scholar 

  27. C. Suryanarayana, JOM 54, 24 (2002).

    Article  Google Scholar 

  28. J.E. Kim, S.J. Kim, and Y.S. Yang, Mater. Sci. Eng. A-Struct. 304–306, 487 (2001).

    Article  Google Scholar 

  29. A.R. Polu and R. Kumar, Bull. Mater. Sci. 34, 1063 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Solomon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solomon, S., George, A., Thomas, J.K. et al. Preparation, Characterization, and Ionic Transport Properties of Nanoscale Ln2Zr2O7 (Ln = Ce, Pr, Nd, Sm, Gd, Dy, Er, and Yb) Energy Materials. J. Electron. Mater. 44, 28–37 (2015). https://doi.org/10.1007/s11664-014-3473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3473-y

Keywords

Navigation