Skip to main content

Thermoelectric Properties of Pseudogap Ti10Ru19B8 and Ti9TM2Ru18B8 (TM: Cr-Cu) Compounds

The thermoelectric properties of ternary Ti10Ru19B8 and quaternary Ti9TM2Ru18B8 (TM: Cr, Mn, Fe, Co, Ni, Cu) compounds were investigated in the temperature range from 373 K to 973 K. They form pseudogaps in the electronic densities of states near the Fermi level, E F, which is suitable for thermoelectric materials. We synthesized crack-free pellet samples using arc-melting followed by spark plasma sintering. A maximum dimensionless figure of merit zT max was 0.09 at 973 K for Ti10Ru19B8 whereas a large power factor of 1.4 mW/m K2 was obtained at that temperature. The phonon thermal conductivity decreased through TM substitutions; however, the power factor also decreased due to an additional electronic density of states originated from TM d-states around E F; that is, excitations of both holes and electrons.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  2. 2.

    Y. Takagiwa and K. Kimura, Sci. Tech. Adv. Mater. 15, 044802 (2014).

    Article  Google Scholar 

  3. 3.

    Y. Nishino, H. Sumi, and U. Mizutani, Phys. Rev. B 71, 094425 (2005).

    Article  Google Scholar 

  4. 4.

    Y. Takagiwa, K. Kitahara, and K. Kimura, J. Appl. Phys. 113, 023713 (2013).

    Article  Google Scholar 

  5. 5.

    Y. Takagiwa, Y. Matsuura, and K. Kimura, J. Electron. Mater. 43, 2206 (2014).

    Article  Google Scholar 

  6. 6.

    Y. Pei, X. Shi, A.D. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Nature (Lond.) 473, 66 (2011).

    Article  Google Scholar 

  7. 7.

    H. Wang, Z.M. Gibbs, Y. Takagiwa, and G.J. Snyder, Energy Environ. Sci. 7, 804 (2014).

    Article  Google Scholar 

  8. 8.

    M.A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Takabatake, Appl. Phys. Lett. 92, 041901 (2008).

    Article  Google Scholar 

  9. 9.

    G.S. Nolas, M. Kaeser, R.T. Littleton IV, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).

    Article  Google Scholar 

  10. 10.

    E.S. Toberer, A. Zevalkink, and G.J. Snyder, J. Mater. Chem. 21, 15843 (2011).

    Article  Google Scholar 

  11. 11.

    M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).

    Article  Google Scholar 

  12. 12.

    B.P.T. Fokwa, G.D. Samolyuk, G.J. Miller, and R. Donskowski, Inorg. Chem. 47, 2113 (2008).

    Article  Google Scholar 

  13. 13.

    B.P.T. Fokwa and Z. Anorg, Allg. Chem. 635, 2258 (2009).

    Article  Google Scholar 

  14. 14.

    B.P.T. Fokwa, C. Goerens, and M. Gilleßen, Z. Kristallogr. 225, 180 (2010).

    Article  Google Scholar 

  15. 15.

    C. Goerens, J. Brgoch, G.J. Miller, and B.P.T. Fokwa, Inorg. Chem. 50, 6289 (2011).

    Article  Google Scholar 

  16. 16.

    J. Brgoch, C. Goerens, B.P.T. Fokwa, and G.J. Miller, J. Am. Chem. Soc. 133, 683 (2011).

    Article  Google Scholar 

  17. 17.

    C.R. Hubbard, E.H. Evans, and D.K. Smith, J. Appl. Cryst. 9, 169 (1976).

    Article  Google Scholar 

  18. 18.

    Web [http://www.advancesoft.jp/product/advance_phase/]

  19. 19.

    Web [http://icsd.fiz-karlsruhe.de/icsd/]

  20. 20.

    C. Goerens, J. Brgoch, G.J. Miller, and B.P.T. Fokwa, J. Solid State Chem. 204, 283 (2013).

    Article  Google Scholar 

  21. 21.

    K. Edagawa, K. Kajiyama, R. Tamura, and S. Takeuchi, Mater. Sci. Eng. A 312, 293 (2001).

    Article  Google Scholar 

  22. 22.

    Y. Takagiwa, T. Kamimura, S. Hosoi, J.T. Okada, and K. Kimura, Z. Kristallogr. 224, 21 (2009).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Thermal & Electric Energy Technology Foundation (TEET) and KAKENHI Nos. 24360262 and 26709051 from JSPS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. Takagiwa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takagiwa, Y., Yoshida, T., Yanagihara, D. et al. Thermoelectric Properties of Pseudogap Ti10Ru19B8 and Ti9TM2Ru18B8 (TM: Cr-Cu) Compounds. Journal of Elec Materi 44, 1483–1490 (2015). https://doi.org/10.1007/s11664-014-3423-8

Download citation

Keywords

  • Thermoelectric properties
  • pseudogap
  • complex structure borides
  • spark plasma sintering
  • electronic structure calculation