Advertisement

Journal of Electronic Materials

, Volume 44, Issue 1, pp 399–406 | Cite as

Thermoelectric Properties and Performance of n-Type and p-Type Graphite Intercalation Compounds

  • Rika MatsumotoEmail author
  • Yusuke Okabe
  • Noboru Akuzawa
Article

Abstract

n-Type alkali metal-graphite intercalation compounds (GICs) and p-type metal chloride-GICs were prepared from commercially available graphite sheets, namely PGS® and GRAFOIL®. Their thermoelectric properties, electrical conductivity, thermal conductivity, and Seebeck coefficient were measured, and their thermoelectric performance was estimated in terms of the figure of merit and power factor. The electrical conductivity (103 S cm−1 to 104 S cm−1) and thermal conductivity (40 W m−1 K−1 to 200 W m−1 K−1) of these GICs are much higher than those of other, conventional thermoelectric materials, whereas their absolute Seebeck coefficients (±30 μV K−1) are lower. Therefore, although the figures of merit of the GICs are somewhat lower (∼105 K−1) than those of other thermoelectric materials, their power factors (∼103 W m−1 K−2) are sufficiently high. The thermoelectric properties of these GICs mainly depend on the host graphite type and slightly on the intercalated species. However, the Seebeck coefficient is independent of both, and the thermoelectric performance of the GICs is strongly governed by their high electrical conductivity. The power factors of almost all the GICs prepared from PGS were greater than 10−3 W m−1 K−2, which is a critical threshold value for use of thermoelectric materials in practical applications. Furthermore, the dilute K-GIC with stage-7 structure had a large Seebeck coefficient (−58 μV Κ−1), which improved the power factor to more than 10−2 W m−1 K−2. Considering the advantages of GICs, this study confirms their significant potential as thermoelectric materials.

Keywords

Graphite intercalation compounds electrical conductivity thermal conductivity Seebeck coefficient thermoelectric performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Matsumoto, Y. Hoshina, and N. Akuzawa, Mater. Trans. 50, 1607 (2009).CrossRefGoogle Scholar
  2. 2.
    J. Hone, I. Ellwood, M. Muno, A. Mizel, M.L. Cohen, A. Zettl, A.G. Rinzler, and R.E. Smalley, Phys. Rev. Lett. 80, 1042 (1998).CrossRefGoogle Scholar
  3. 3.
    C. Yu, S. Shi, Z. Yao, D. Li, and A. Majumdar, Nano Lett. 5, 1842 (2005).CrossRefGoogle Scholar
  4. 4.
    V.H. Guerrero and D.D.L. Chung, Compos. Interfaces 9, 395 (2002).CrossRefGoogle Scholar
  5. 5.
    L.C.F. Blackman, J.F. Mathews, and A.R. Ubbelohde, Proc. R. Soc. Lond. A 25, 339 (1960).CrossRefGoogle Scholar
  6. 6.
    J. Heremans, J.P. Issi, I. Zabala-Martinez, M. Shayegan, and M.S. Dresselhaus, Phys. Lett. A 84, 387 (1981).CrossRefGoogle Scholar
  7. 7.
    J. Boxus, B. Poulaert, J.P. Issi, H. Mazurek, and M.S. Dresselhaus, Solid State Commun. 38, 1117 (1981).CrossRefGoogle Scholar
  8. 8.
    J.P. Issi, B. Poulaert, J. Heremans, and M.S. Dresselhaus, Solid State Commun. 44, 449 (1982).CrossRefGoogle Scholar
  9. 9.
    M. Elzinga, D.T. Morelli, and C. Uher, Phys. Rev. B 26, 3312 (1982).CrossRefGoogle Scholar
  10. 10.
    J.P. Issi, J. Heremans, and M.S. Dresselhaus, Phys. Rev. B 27, 1333 (1983).CrossRefGoogle Scholar
  11. 11.
    L. Piraux, J.P. Issi, and P.C. Eklund, Solid State Commun. 56, 413 (1985).CrossRefGoogle Scholar
  12. 12.
    L. Piraux, B. Nysten, J.P. Issi, J.F. Marêché, and E. McRae, Solid State Commun. 55, 517 (1985).CrossRefGoogle Scholar
  13. 13.
    M. Kinany-Alaoui, L. Piraux, J.P. Issi, P. Pernot, and R. Vangelisti, Solid State Commun. 68, 1065 (1988).CrossRefGoogle Scholar
  14. 14.
    L. Piraux, M. Kinany-Alaoui, J.P. Issi, A. Perignon, P. Pernot, and R. Vangelisti, Phys. Rev. B 38, 4329 (1988).CrossRefGoogle Scholar
  15. 15.
    L. Piraux, J.P. Issi, J.F. Marêché, and E. McRae, Synth. Met. 30, 245 (1989).CrossRefGoogle Scholar
  16. 16.
    L. Piraux, V. Bayot, J.P. Issi, M.S. Dresselhaus, M. Endo, and T. Nakajima, Phys. Rev. B 41, 4961 (1990).CrossRefGoogle Scholar
  17. 17.
    L. Piraux, K. Amine, V. Bayot, J.P. Issi, A. Tressaud, and H. Fujimoto, Solid State Commun. 82, 371 (1992).CrossRefGoogle Scholar
  18. 18.
    C. Uher and D.T. Morelli, Synth. Met. 12, 91 (1985).CrossRefGoogle Scholar
  19. 19.
    R. Matsumoto, N. Akuzawa, and Y. Takahashi, Mater. Trans. 47, 1458 (2006).CrossRefGoogle Scholar
  20. 20.
    R. Matsumoto, M. Arakawa, H. Yoshida, and N. Akuzawa, Synth. Met. 162, 2149 (2012).CrossRefGoogle Scholar
  21. 21.
    M.S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 (2002).CrossRefGoogle Scholar
  22. 22.
    M. Ohira, T. Terai, and Y. Takahashi, TANSO 1986, 45 (1986).CrossRefGoogle Scholar
  23. 23.
    M. Inagaki and J. Mittal, Synth. Met. 99, 79 (1999).CrossRefGoogle Scholar
  24. 24.
    O. Takahashi, Y. Iye, and S. Tanuma, Solid State Commun. 37, 863 (1981).CrossRefGoogle Scholar
  25. 25.
    M. Ohira (Ph.D. thesis, Hokkaido University, Japan 1992, in Japanese).Google Scholar
  26. 26.
    Y. Gotoh, K. Tamada, N. Akuzawa, M. Fujishige, K. Takeuchi, M. Endo, R. Matsumoto, Y. Soneda, and T. Takeichi, J. Phys. Chem. Solids 74, 1482 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  1. 1.Faculty of EngineeringTokyo Polytechnic UniversityKanagawaJapan
  2. 2.Department of Chemical Science and EngineeringTokyo National College of TechnologyTokyoJapan

Personalised recommendations