Skip to main content
Log in

Effects of Mg Doping on the Performance of InGaN Films Made by Reactive Sputtering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Mg-doped InGaN (Mg-InGaN) films have been deposited directly on Si (100) substrates by radio-frequency reactive sputtering technique with single cermet targets in an Ar/N2 atmosphere. The cermet targets with a constant 5% indium content were made by hot pressing the mixture of metallic In, Ga, and Mg powders and ceramic GaN powder. The Mg-InGaN films had a wurtzite structure with a preferential (\( 10\bar{1}0 \)) growth plane. The SEM images showed that Mg-InGaN films were smooth, continuous, free from cracks and holes, and composed of nanometer-sized grains. As the Mg dopant content in Mg-InGaN increased to 7.7 at.%, the film was directly transformed into p-type conduction without a post-annealing process. It had high hole concentration of 5.53 × 1018 cm−3 and electrical mobility of 15.7 ± 4.2 cm2 V−1 s−1. The over-doping of Mg in InGaN degraded the electrical properties. The bandgap of Mg-InGaN films decreased from 2.92 eV to 2.84 eV, as the Mg content increased from 7.7% to 18.2%. The constructed p-type Mg-InGaN/n-type GaN diode was used to confirm the realization of the p-type InGaN by sputtering technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Ambacher, J. Phys. D 31, 2653 (1998).

    Article  Google Scholar 

  2. C.S. Gallinat, G. Koblmüller, J.S. Brown, S. Bernardis, J.S. Speck, G.D. Chern, E.D. Readinger, H. Shen, and M. Wraback, Appl. Phys. Lett. 89, 032109 (2006).

    Article  Google Scholar 

  3. J. Wan, R. Venugopal, M.R. Melloch, H.M. Liaw, and W.J. Rummel, Appl. Phys. Lett. 79, 1459 (2001).

    Article  Google Scholar 

  4. B. Liu, W. Luo, R. Zhang, Z. Zou, Z. Xie, Z. Li, D. Chen, X. Xiu, P. Han, and Y. Zheng, Phys. Status Solidi C 7, 1817 (2010).

    Article  Google Scholar 

  5. S.C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, J. Appl. Phys. 87, 965 (2000).

    Article  Google Scholar 

  6. W. Lanford, V. Kumar, R. Schwindt, A. Kuliev, I. Adesida, A.M. Dabiran, A.M. Wowchak, P.P. Chow, and J.W. Lee, Eelectron. Lett. 40, 771 (2004).

    Article  Google Scholar 

  7. N. Okamoto, K. Hoshino, N. Hara, M. Takikawa, and Y. Arakawa, J. Cryst. Growth 272, 278 (2004).

    Article  Google Scholar 

  8. S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Jpn. J. Appl. Phys. 31, 139 (1992).

    Article  Google Scholar 

  9. Y. Chen, H. Wu, G. Yue, Z. Chen, Z. Zheng, Z. Wu, G. Wang, and H. Jiang, Appl. Phys. Express 6, 041001 (2013).

    Article  Google Scholar 

  10. X. Zhang, S.J. Chua, P. Li, K.B. Chong, and W. Wang, Appl. Phys. Lett. 73, 1772 (1998).

    Article  Google Scholar 

  11. G. Kipshidze, V. Kuryatkov, B. Borisov, Y. Kudryavtsev, R. Asomoza, S. Nikishin, and H. Temkin, Appl. Phys. Lett. 80, 2910 (2002).

    Article  Google Scholar 

  12. L. Sang, M. Takeguchi, W. Lee, Y. Nakayama, M. Lozac’h, T. Sekiguchi, and M. Sumiya, Appl. Phys. Express 3, 111004 (2010).

    Article  Google Scholar 

  13. B.N. Pantha, A. Sedhain, J. Li, J.Y. Lin, and H.X. Jiang, Appl. Phys. Lett. 95, 261904 (2009).

    Article  Google Scholar 

  14. P. Kozodoy, H. Xing, S.P. DenBaars, U.K. Mishra, A. Saxler, R. Perrin, S. Elhamri, and W.C. Mitchel, J. Appl. Phys. 87, 1832 (2000).

    Article  Google Scholar 

  15. K. Kumakura, T. Makimoto, and N. Kobayashi, J. Appl. Phys. 93, 3370 (2003).

    Article  Google Scholar 

  16. P.C. Chen, C.H. Chen, S.J. Chang, Y.K. Su, P.C. Chang, and B.R. Huang, Thin Solid Films 498, 113 (2006).

    Article  Google Scholar 

  17. J.E. Northrup, L.T. Romano, and J. Neugebauer, Appl. Phys. Lett. 74, 2319 (1999).

    Article  Google Scholar 

  18. C.M. Balkasa, C. Basceria, and R.F. Davis, Powder Diffr. 10, 266 (1995).

    Article  Google Scholar 

  19. R.D. Shannon and C.T. Prewitt, Acta Cryst. B 25, 925 (1969).

    Article  Google Scholar 

  20. S. Strite and H. Morkoç, J. Vac. Sci. Technol. B 10, 1237 (1992).

    Article  Google Scholar 

  21. K. Wang and R.R. Reeber, Appl. Phys. Lett. 79, 1602 (2011).

    Article  Google Scholar 

  22. W. Lee, J. Limb, J.H. Ryou, D. Yoo, M.A. Ewing, Y. Korenblit, and R.D. Dupuis, J. Display Technol. 3, 126 (2007).

    Article  Google Scholar 

  23. W. Lee, J. Limb, J.H. Ryou, D. Yoo, T. Chung, and R.D. Dupuis, J. Cryst. Growth 287, 557 (2006).

    Google Scholar 

  24. C.C. Li and D.H. Kuo, J. Mater. Sci. Mater. Electron 25, 1942 (2014).

    Article  Google Scholar 

  25. K. Kumakura, T. Makimoto, and N. Kobayashi, Jpn. J. Appl. Phys. 39, 337 (2000).

    Article  Google Scholar 

  26. K. Sasamoto, T. Hotta, K. Sugita, A.G. Bhuiyan, A. Hashimoto, A. Yamamoto, K. Kinoshita, and Y. Kohji, J. Cryst. Growth 318, 492 (2011).

    Article  Google Scholar 

  27. S. Muthukumaran and R. Gopalakrishnan, Opt. Mater. 34, 1946 (2012).

    Article  Google Scholar 

  28. I. Gorczyca, A. Svane, and N.E. Christensen, Solid State Commun. 101, 747 (1997).

    Article  Google Scholar 

  29. M.G. Ganchenkova and R.M. Nieminen, Phys. Rev. Lett. 96, 196402 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hau Kuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, DH., Li, CC., Tuan, T.T.A. et al. Effects of Mg Doping on the Performance of InGaN Films Made by Reactive Sputtering. J. Electron. Mater. 44, 210–216 (2015). https://doi.org/10.1007/s11664-014-3406-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3406-9

Keywords

Navigation