Advertisement

Journal of Electronic Materials

, Volume 44, Issue 1, pp 442–456 | Cite as

An Investigation into the Effect of a Post-electroplating Electrochemical Oxidation Treatment on Tin Whisker Formation

  • M. A. AshworthEmail author
  • D. Haspel
  • L. Wu
  • G. D. Wilcox
  • R. J. Mortimer
Article

Since the ‘cracked oxide theory’ was proposed by Tu in 1994,1 there has only been a limited number of studies that have sought to investigate the effect of the Sn oxide on whisker growth. The current study has used electrochemical oxidation to produce oxide films, which has enabled the effect of the surface oxide thickness on whisker growth to be established. The effect of oxide thickness on whisker growth has been investigated for tin electrodeposits on both Cu and brass substrates. The influence of applied oxidation potential on the thickness of the Sn oxide film has been investigated using x-ray photoelectron spectroscopy (XPS) for potassium bicarbonate–carbonate and borate buffer electrolyte solutions. Whisker growth from electrochemically oxidised Sn-Cu deposits on Cu and Sn deposits on brass has been investigated and compared with samples left to develop a native air-formed oxide. XPS studies show that the thickness of the electrochemically formed Sn oxide film is dependent on the applied oxidation potential and the total charge passed. Subsequent whisker growth studies demonstrate that electrochemically oxidised Sn-Cu deposits on Cu and Sn deposits on brass are significantly less susceptible to whisker growth than those having a native oxide film. For Sn deposits on brass, the electrochemically formed Sn oxide greatly reduces Zn oxide formation at the surface of the tin deposit, which results in whisker mitigation. For Sn-Cu deposits on Cu, the reduction in whisker growth must simply derive from the increased thickness of the Sn oxide, i.e. the Sn oxide film has an important role in stemming the development of whiskers.

Keywords

Tin electrochemical oxidation electrodeposition whisker growth zinc diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the UK EPSRC Innovative Electronics Manufacturing Research Centre for funding this research through the WHISKERMIT programme and also Loughborough University Materials Research School for provision of a student bursary for one of the authors (Dan Haspel).

References

  1. 1.
    K.N. Tu, Phys. Rev. B 49, 2030 (1994).CrossRefGoogle Scholar
  2. 2.
    K.N. Tu and K. Zeng, Proceedings of IEEE Electronic Components and Technology Conference (Piscatawny, NJ, 2002), pp. 1194–1200.Google Scholar
  3. 3.
    K. Tu, C. Chen, and A.T. Wu, J. Mater. Sci. 18, 269 (2007).Google Scholar
  4. 4.
    K.S. Kumar, L. Reinbold, A.F. Bower, and E. Chason, J.␣Mater. Res. 23, 2916 (2008).CrossRefGoogle Scholar
  5. 5.
    J.K. Shin and E. Chason, J. Mater. Res. 24, 1522 (2009).CrossRefGoogle Scholar
  6. 6.
    E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, and K.S. Kumar, Appl. Phys. Lett. 92, 171901 (2008).CrossRefGoogle Scholar
  7. 7.
    B.Z. Lee and D.N. Lee, Acta Mater. 46, 3701 (1998).CrossRefGoogle Scholar
  8. 8.
    C.Y. Chang and R.W. Vook, Thin Solid Films 228, 205 (1993).CrossRefGoogle Scholar
  9. 9.
    K.W. Moon, C.E. Johnson, M.E. Williams, O. Kongstein, G.R. Stafford, C.A. Handwerker, and W.J. Boettinger, J.␣Electron. Mater. 34, L31 (2005).CrossRefGoogle Scholar
  10. 10.
    N. Jadhav, E. Buchovecky, E. Chason, and A. Bower, JOM 62, 30 (2010).CrossRefGoogle Scholar
  11. 11.
    B. Jiang and A.P. Xian, Philos. Mag. Lett. 86, 521 (2006).CrossRefGoogle Scholar
  12. 12.
    K. Suganuma, A. Baated, K.-S. Kim, K. Hamasaki, N.␣Nemoto, T. Nakagawa, and T. Yamada, Acta Mater. 59, 7255 (2011).CrossRefGoogle Scholar
  13. 13.
    K.N. Tu, Acta Metall. 21, 347 (1973).CrossRefGoogle Scholar
  14. 14.
    R. Díaz, I. Díez-pérez, P. Gorostiza, F. Sanz, and J.R. Morante, J. Braz. Chem. Soc. 14, 523 (2003).CrossRefGoogle Scholar
  15. 15.
    S.D. Kapusta and N. Hackerman, Electrochim. Acta 25, 1625 (1980).CrossRefGoogle Scholar
  16. 16.
    P.E. Alvarez, S.B. Ribotta, M.E. Folquer, C.A. Gervasi, and J.R. Vilche, Corros. Sci. 44, 49 (2002).CrossRefGoogle Scholar
  17. 17.
    M. Drogowska, H. Menard, and L. Brossard, J. Appl. Electrochem. 21, 84 (1991).CrossRefGoogle Scholar
  18. 18.
    M.A. Ashworth, G.D. Wilcox, R.L. Higginson, R.J. Heath, and C. Liu, Trans. Inst. Met. Finish. 91, 260 (2013).CrossRefGoogle Scholar
  19. 19.
    D. Morgan Tench, D.P. Anderson, and P. Kim, J. Appl. Electrochem. 24, 18 (1994).CrossRefGoogle Scholar
  20. 20.
    G. Schon, J. Electron Spectros. Relat. Phenom. 2, 75 (1973).CrossRefGoogle Scholar
  21. 21.
    K.W. Moon, M.E. Williams, C.E. Johnson, G.R. Stafford, C.A. Handwerker, and W.J. Boettinger, Proceedings of PRICM4 Forth Pacific Rim International Conference on Advanced Materials and Processing (Honolulu, Hawaii, ed. S. Hanada, et al., 11–15 December 2001), pp. 1115–1118.Google Scholar
  22. 22.
    S.N. Shah and D. Eurof Davies, Electrochim. Acta 8, 663 (1963).CrossRefGoogle Scholar
  23. 23.
    NIST, X-ray Photoelectron Spectroscopy Database, NIST Stand. Ref. Database 20, Version 4.1, http://srdata.nist.gov/xps/ (n.d.).
  24. 24.
    W. Zhang and W. Ruythooren, European Microelectronics and Packaging Conference (EMPC 2009) (2009), vol. 1 2, pp. 597–600.Google Scholar
  25. 25.
    S.C. Britton and M. Clarke, Trans. Inst. Met. Finish. 40, 205 (1964).Google Scholar
  26. 26.
    B.D. Dunn, European Space Agency Representative. STR-223, European Space Agency (Paris, 1987).Google Scholar
  27. 27.
    S. Sakuyama and M. Kutami, FUJITSU Sci. Technol. J. 41, 217 (2005).Google Scholar
  28. 28.
    W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.W. Moon, M.E. Williams, and G.R. Stafford, Acta Mater. 53, 5033 (2005).CrossRefGoogle Scholar
  29. 29.
    M.E. Williams, K.W. Moon, W.J. Boettinger, D. Josell, and A.D. Deal, J. Electron. Mater. 36, 214 (2007).CrossRefGoogle Scholar
  30. 30.
    M. Dittes, P. Oberndorff, and L. Petit, 53rd Electronic Components and Technology Conference 2003 Proceedings (2003), pp. 822–826.Google Scholar
  31. 31.
    J. Cheng, F. Yang, P.T. Vianco, B. Zhang, and J.C.M. Li, J. Electron. Mater. 40, 2069 (2011).CrossRefGoogle Scholar
  32. 32.
    E.R. Crandall, Factors Governing Tin Whisker Growth (Ph.D. thesis, Auburn University, 2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • M. A. Ashworth
    • 1
    Email author
  • D. Haspel
    • 1
  • L. Wu
    • 1
  • G. D. Wilcox
    • 1
  • R. J. Mortimer
    • 2
  1. 1.Department of MaterialsLoughborough UniversityLoughboroughUK
  2. 2.Department of ChemistryLoughborough UniversityLoughboroughUK

Personalised recommendations