Journal of Electronic Materials

, Volume 44, Issue 6, pp 1426–1431 | Cite as

Mechanism of the Reduced Thermal Conductivity of Fishbone-Type Si Phononic Crystal Nanostructures

  • M. Nomura
  • J. Maire


The mechanism of the reduced thermal conductivity of fishbone-type phononic crystal (PnC) nanostructures, in which ballistic phonon transport is dominant, was investigated with consideration of both the wave and particle nature of phonons. Phononic band diagrams were calculated for an Si nanowire and a fishbone-type PnC structure with a period of 100 nm, and a clear reduction of the group velocity of phonons, because of a zone-folding effect, was shown. Air-suspended Si nanowires and fishbone-type PnC structures were fabricated by electron beam (EB) lithography, and their thermal conductivities were measured by use of the originally developed micro time-domain thermoreflectance method. The PnC structure had a much lower thermal conductivity. We measured the thermal conductivity of a variety of PnC structures with different fin widths to investigate the mechanism of the reduced thermal conductivity observed. The result indicates that the increase of the phonon traveling distance. as a result of the fins, also results in reduced thermal conductivity.


Phononics phononic crystal nanoscale heat transport thermoreflectance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li Shi, Nanoscale Microscale Thermophys. Eng. 16, 79 (2012).CrossRefGoogle Scholar
  2. 2.
    J. Hone, et al., Science 289, 1730 (2000).CrossRefGoogle Scholar
  3. 3.
    J.H. Seol, et al., Science 328, 213 (2010).CrossRefGoogle Scholar
  4. 4.
    V. Narayanamurti, H.L. Stormer, M.A. Chin, A.C. Grossard, and W. Wiegmann, Phys. Rev. Lett. 2, 2012 (1979).CrossRefGoogle Scholar
  5. 5.
    M.N. Luckyanova, et al., Science 338, 936 (2012).CrossRefGoogle Scholar
  6. 6.
    D.M. Rowe, V.S. Shukla, and N. Savvides, Nature 290, 765 (1981).CrossRefGoogle Scholar
  7. 7.
    C. Bera, N. Mingo, and S. Volz, Phys. Rev. Lett. 104, 115502 (2010).CrossRefGoogle Scholar
  8. 8.
    M. Kashiwagi, S. Hirata, K. Harada, Y. Zheng, K. Miyazaki, M. Yahiro, and C. Adachi, Appl. Phys. Lett. 98, 023114 (2011).CrossRefGoogle Scholar
  9. 9.
    A.I. Hochbaum, et al., Nature 451, 163 (2008).CrossRefGoogle Scholar
  10. 10.
    J.-K. Yu, et al., Nat. Nanotech. 5, 718 (2010).CrossRefGoogle Scholar
  11. 11.
    P.E. Hopkins, et al., Nano Lett. 11, 107 (2011).CrossRefGoogle Scholar
  12. 12.
    N. Zen, T.A. Puurtinen, T.J. Isotalo, S. Chaudhuri, and I.J. Maasilta, Nat. Commun. 5, 3435 (2014).CrossRefGoogle Scholar
  13. 13.
    A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).CrossRefGoogle Scholar
  14. 14.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).CrossRefGoogle Scholar
  15. 15.
    T. Baba, Nat. Photon. 2, 465 (2008).CrossRefGoogle Scholar
  16. 16.
    M. Eichenfield, R. Camacho, J. Chan, K.J. Vahala, and O. Painter, Nature 459, 550 (2009).CrossRefGoogle Scholar
  17. 17.
    M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, Nat. Phys. 6, 279 (2010).CrossRefGoogle Scholar
  18. 18.
    K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, Nat. Photon. 7, 133 (2013).CrossRefGoogle Scholar
  19. 19.
    J. Maire and M. Nomura, Jpn. J. Appl. Phys. 53, 06JE09 (2014).CrossRefGoogle Scholar
  20. 20.
    T. Gorishnyy, C.K. Ullal, M. Maldovan, G. Fytas, and E.L. Thomas, Phys. Rev. Lett. 94, 115501 (2005).CrossRefGoogle Scholar
  21. 21.
    J.N. Gillet, Y. Chalopin, and S. Volz, J. Heat Transf. 131, 043206 (2009).CrossRefGoogle Scholar
  22. 22.
    M. Maldovan, Nature 503, 209 (2013).CrossRefGoogle Scholar
  23. 23.
    A.S. Henry and G. Chen, J. Comput. Theor. Nanosci. 5, 1 (2008).CrossRefGoogle Scholar
  24. 24.
    J. Shiomi, J. Heat Transf. Soc. Jpn 50, 21 (2011).Google Scholar
  25. 25.
    E. Dechaumphai and R. Chen, J. Appl. Phys 111, 073508 (2012).CrossRefGoogle Scholar
  26. 26.
    D.G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004).CrossRefGoogle Scholar
  27. 27.
    A. Jain, Y.-J. Yu, and A.J.H. McGaughey, Phys. Rev. B 87, 195301 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  1. 1.Institute of Industrial ScienceThe University of TokyoTokyoJapan
  2. 2.Institute for Nano Quantum Information ElectronicsThe University of TokyoTokyoJapan
  3. 3.LIMMS-CNRS/IIS (UMI 2820)The University of TokyoTokyoJapan

Personalised recommendations