Journal of Electronic Materials

, Volume 43, Issue 12, pp 4421–4427 | Cite as

Synchrotron Radiation Microtomography for Large Area 3D Imaging of Multilevel Microelectronic Packages

  • John W. Elmer
  • Yan Li
  • Holly D. Barth
  • Dilworth Y. Parkinson
  • Mario Pacheco
  • Deepak Goyal
Article

Abstract

3D x-ray computed tomography (CT), using conventional laboratory-based x-ray sources, has been used in the past to image multiple levels of interconnects in 3D microelectronic packages. These conventional x-ray sources can provide high resolution images with throughput times (TPT) of several hours. However, this can only be performed on localized areas of about 1–2 mm2, which gravely limits the application of 3D x-ray CT in the field of microelectronic packages with sizes usually in the range of 100–3600 mm2. An alternative to laboratory-based x-ray sources is synchrotron radiation, which can produce large area collimated beams for high flux x-ray imaging over a much larger field of view (FOV) than conventional sources. Synchrotrons can potentially image an entire 3D stacked chip package at high resolutions in less than an hour. Here, we present results using the micro-CT line at the advanced light source synchrotron to image an entire 16 × 16 mm system in a package in times as low as 3 min, demonstrating several orders of magnitude increase in the ratio of FOV to TPT as compared to laboratory-based x-ray methods.

Keywords

Computed tomography x-ray imaging die stacking virtual cross section non-destructive failure analysis lead-free solders 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Tian, F. Xu, J.K. Han, D. Choi, Y. Cheng, L. Helfen, M. Di Michiel, T. Baumbach, and K.N. Tu, Appl. Phys. Lett. 99, 082114 (2011).CrossRefGoogle Scholar
  2. 2.
    T. Tian, K. Chen, A.A. MacDowell, D. Parkinson, Y.-S. Lai, and K.N. Tu, Scr. Mater. 65, 646–649 (2011).CrossRefGoogle Scholar
  3. 3.
    A. Lee, W. Liu, C.E. Ho, and K.N. Subramanian, J. Appl. Phys. 102, 053507 (2007).CrossRefGoogle Scholar
  4. 4.
    P. Sarobol, J.P. Koppes, W.H. Chen, P. Su, J.E. Blendell, and C.A. Handwerker, Mater. Lett. 99, 76–80 (2013).CrossRefGoogle Scholar
  5. 5.
    P. Sarobol, W.-H. Chen, A.E. Pedigo, P. Su, J.E. Blendell, and C.A. Handwerker, J. Mater. Res. 28, 747–756 (2013).CrossRefGoogle Scholar
  6. 6.
    J.W. Elmer, E.D. Specht, and M. Kumar, J. Electron. Mater. 39, 273–282 (2010).CrossRefGoogle Scholar
  7. 7.
    J.W. Elmer and E.D. Specht, J. Electron. Mater. 40, 201–212 (2011).CrossRefGoogle Scholar
  8. 8.
    C.M. Gourlay, K. Nogita, A.K. Dahle, Y. Yamamoto, K. Uesugi, T. Nagira, M. Yoshiya, and H. Yasuda, Acta Mater. 59, 4043–4054 (2011).CrossRefGoogle Scholar
  9. 9.
    H.T. Ma, L. Qu, M.L. Huang, L.Y. Gu, N. Zhao, and L. Wang, J. Alloys Compd. 537, 286–290 (2012).CrossRefGoogle Scholar
  10. 10.
    B. Zhou, T.R. Bieler, G. Wu, S. Zaefferer, T.-K. Lee, and K.-C. Liu, J. Electron. Mater. 41, 262–272 (2011).CrossRefGoogle Scholar
  11. 11.
    B. Zhou, T.R. Bieler, T.-K. Lee, and W. Liu, J. Electron. Mater. 42, 319–331 (2012).CrossRefGoogle Scholar
  12. 12.
    A. Cecilia, E. Hamann, T. Koenig, F. Xu, Y. Cheng, L. Helfen, M. Ruat, M. Scheel, M. Zuber, T. Baumbach, A. Fauler, and M. Fiederle, in 15th International Workshop on Radiation Imaging Detectors, Paris, France, 23–27 June 2013.Google Scholar
  13. 13.
    J.W. Elmer and E.D. Specht, Metall. Mater. Trans. A 43, 1528–1537 (2012).CrossRefGoogle Scholar
  14. 14.
    M. Pacheco and D. Goyal, in Proceedings of IEEE Electronic Components and Technology Conference (ECTC), 2011, pp. 1263–1268.Google Scholar
  15. 15.
    Y. Li, Y. Cai, M. Pacheco, R.C. Dias, and D. Goyal, in Proceedings from the 38th International Symposium for Testing and Failure Analysis (ISTFA, ASM International), 2012, pp. 95–99.Google Scholar
  16. 16.
    Y. Li, J.S. Moore, B. Pathangey, R.C. Dias, and D. Goyal, IEEE Trans. Device Mater. Reliab. 12, 494–500 (2012).CrossRefGoogle Scholar
  17. 17.
    Y. Li, L. Xu, P. Liu, B. Pathangey, M. Pacheco, R.C. Dias, and D. Goyal, in Proceedings from the 143rd TMS Annual Meetings and Exhibition, San Diego, CA, March 2014.Google Scholar
  18. 18.
    Y. Li, M. Pacheco, D. Goyal, J.W. Elmer, H.D. Barth, and D. Parkinson, in Proceedings of the 64th IEEE Electronic Components and Technology Conference (ECTC), Lake Buena Vista, Florida, USA, May 2014, pp. 1457–1463.Google Scholar
  19. 19.
    J.H. Kinney and M.C. Nichols, Annu. Rev. Mater. Sci. 22, 121–152 (1992).CrossRefGoogle Scholar
  20. 20.
    M. Dierick, B. Masschaele, and L. Van Hoorebeke, Meas. Sci. Technol. 15, 1366–1370 (2004).CrossRefGoogle Scholar
  21. 21.

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • John W. Elmer
    • 1
  • Yan Li
    • 2
  • Holly D. Barth
    • 1
  • Dilworth Y. Parkinson
    • 3
  • Mario Pacheco
    • 2
  • Deepak Goyal
    • 2
  1. 1.Materials Engineering DivisionLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Assembly Test and Technology Development Failure Analysis LabsIntel CorporationChandlerUSA
  3. 3.Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations