Journal of Electronic Materials

, Volume 43, Issue 10, pp 3876–3883 | Cite as

Comparing Doping Methodologies in Mg2Si/AgMg System

  • G. S. Polymeris
  • A. Theodorakakos
  • K. Mars
  • E. Godlewska
  • Ch. B. Lioutas
  • E. Hatzikraniotis
  • K. M. Paraskevopoulos
Article

Abstract

Morphological and optical characterizations for the Mg2Si samples doped with Ag are presented. Two different doping methodologies with silver, namely in situ and ex situ doping, were studied for the case of Mg2Si of self-propagating high-temperature synthesis. Electron microscopy measurements in both scanning and transmission configurations verified the presence of AgMg precipitates embedded in the Mg2Si matrix and similar results were also yielded by FTIR spectroscopy. Finally, the dependence of silver content in both forms of dopant and inter-metallic constituent is studied upon doping technology.

Keywords

Thermoelectric materials magnesium silicide silver SEM TEM FTIR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.G. Morris, R.D. Redin, and G.C. Danielson, Phys. Rev. 109, 1909 (1958).CrossRefGoogle Scholar
  2. 2.
    R.D. Redin, R.G. Morris, and G.C. Danielson, Phys. Rev. 109, 1916 (1958).CrossRefGoogle Scholar
  3. 3.
    M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, and N. Hamada, J. Appl. Phys. 104, 013703 (2008).CrossRefGoogle Scholar
  4. 4.
    T. Sakamoto, T. Iida, A. Matsumoto, Y. Honda, T. Nemoto, J. Sato, and Y. Takanashi, J. Electr. Mater. 39, 1708 (2010).CrossRefGoogle Scholar
  5. 5.
    J. Tani and H. Kido, Intermetallics 16, 418 (2008).CrossRefGoogle Scholar
  6. 6.
    G.S. Nolas, D. Wang, and M. Beekman, Phys. Rev. B 76, 235204 (2007).CrossRefGoogle Scholar
  7. 7.
    J. Tani, et al., Intermetallics 15, 1202 (2007).CrossRefGoogle Scholar
  8. 8.
    J. Tani and H. Kido, Physica B 364, 218 (2005).CrossRefGoogle Scholar
  9. 9.
    A.U. Khan, N. Vlachos, and Th Kyratsi, Scripta Mater. 69, 606 (2013).CrossRefGoogle Scholar
  10. 10.
    Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I.A. Nishida, and K. Masumoto, Meter. Trans. JIM 33, 845 (1992).CrossRefGoogle Scholar
  11. 11.
    H. Ihou-Mouko, et al., J. Alloy Compd. 509, 6503 (2011).CrossRefGoogle Scholar
  12. 12.
    J. Tobola, P. Zwolenski, and S. Kaprzyk, Solid State Phenom. 196, 266 (2012).CrossRefGoogle Scholar
  13. 13.
    K. Mars, H. Ihou-Mouko, G. Pont, J. Tobola, and H. Scherrer, J. Electr. Mater. 38, 1360 (2009).CrossRefGoogle Scholar
  14. 14.
    Q. Zhang, X.B. Zhao, T.J. Zhu, and J.P. Tu, Phys. Stat. Sol. (RRL) 2, 56 (2008).CrossRefGoogle Scholar
  15. 15.
    I. Jung and J. Kim, J. Alloy. Compd. 494, 137 (2010).CrossRefGoogle Scholar
  16. 16.
    J. Bourgeois, J. Tobola, B. Wiendlocha, L. Chaput, P. Zwolenski, D. Berthebaud, F. Gascoin, Q. Recour, and H. Scherrer, Funct. Mater. Lett. 6, 1340005 (2013).CrossRefGoogle Scholar
  17. 17.
    A. Prytuliak, K. Mars, E. Godlewska, and D. Berthebaud, J. Electr. Mater. DOI: 10.1007/s11664-014-3119-0.
  18. 18.
    H.Y. Chen, N. Savvides, T. Dasgupta, C. Stiewe, and E. Mueller, Phys. Status Solidi A 207, 2523 (2010).CrossRefGoogle Scholar
  19. 19.
    E. Godlewska, K. Mars, R. Mania, and S. Zimowski, Intermetallics 19, 1983 (2011).CrossRefGoogle Scholar
  20. 20.
    M. Ioannou, K. Chrissafis, E. Pavlidou, F. Gascoin, and Th Kyratsi, J. Solid State Chem. 197, 172 (2013).CrossRefGoogle Scholar
  21. 21.
    M. Riffel and J. Schilz, 16th International Conference on Thermoelectrics (1997) pp. 283–286.Google Scholar
  22. 22.
    S. Battiston, S. Fiameni, M. Saleemi, and S. Bodrini, J. Electr. Mater. 42, 1956 (2013).CrossRefGoogle Scholar
  23. 23.
    E. Savary, F. Gascoin, S. Marinel, and R. Heuguet, Powder Technol. 228, 295 (2012).CrossRefGoogle Scholar
  24. 24.
    J.E. Spanier and I.P. Herman, Phys. Rev. B 61, 10437 (2000).CrossRefGoogle Scholar
  25. 25.
    M. Baleva, G. Zlateva, A. Atanassov, M. Abrashev, and E. Goranova, Phys. Rev. B 72, 115330 (2005).CrossRefGoogle Scholar
  26. 26.
    D. Stathokostopoulos, D. Chaliampalias, E. Stefanaki, G. Polymeris, E. Pavlidou, K. Chrissafis, E. Hatzikraniotis, K. Paraskevopoulos, and G. Vourlias, Appl. Surf. Sci. 285B, 417 (2013).CrossRefGoogle Scholar
  27. 27.
    M. Ioannou, G. Polymeris, E. Hatzikraniotis, A.U. Khan, K.M. Paraskevopoulos, and Th Kyratsi, J. Electr. Mater. 42, 1827 (2013).CrossRefGoogle Scholar
  28. 28.
    S.K. Bux, M.T. Yeung, E.S. Toberer, G.J. Snyder, R.B. Kaner, and J.-P. Fleurial, J. Mater. Chem. 21, 12259 (2011).CrossRefGoogle Scholar
  29. 29.
    J.-Y. Jung and I.-H. Kim, Electr. Mater. Lett. 6, 187 (2010).CrossRefGoogle Scholar
  30. 30.
    J.-I. Tani and H. Kido, Physica B 364, 218 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • G. S. Polymeris
    • 1
  • A. Theodorakakos
    • 1
  • K. Mars
    • 2
  • E. Godlewska
    • 2
  • Ch. B. Lioutas
    • 1
  • E. Hatzikraniotis
    • 1
  • K. M. Paraskevopoulos
    • 1
  1. 1.Solid State Section, Physics DepartmentAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations