Advertisement

Journal of Electronic Materials

, Volume 43, Issue 10, pp 3870–3875 | Cite as

Monte Carlo Simulations of Thermal Conductivity in Nanoporous Si Membranes

  • Stefanie Wolf
  • Neophytos Neophytou
  • Zlatan Stanojevic
  • Hans Kosina
Article

Abstract

We present a Monte Carlo study of heat transport in Si nanomeshes. Phonons are treated semiclassically as particles of specific energy and velocity that undergo phonon–phonon scattering and boundary scattering on the surfaces of the nanomesh pores. We investigate the influence of: (1) geometric parameters such as the pore arrangement/randomness and porosity, and (2) the roughness amplitude of the pore surfaces on the thermal conductivity of the nanomeshes. We show that the nanomesh porosity has a strong detrimental influence on the thermal conductivity. Boundary roughness still degrades the thermal conductivity, but its influence is smaller.

Keywords

Phonon Boltzmann transport equation Monte Carlo nanoporous silicon nanomesh thermoelectrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work has been supported by the Austrian Science Fund (FWF) contract P25368-N30. The authors acknowledge helpful discussions with Dr.␣Hossein Karamitaheri.

References

  1. 1.
    J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, and J.R. Heath, Nat. Nanotechnol. 5, 718–721 (2010).CrossRefGoogle Scholar
  2. 2.
    J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang, Nano Lett. 10, 4279–4283 (2010).CrossRefGoogle Scholar
  3. 3.
    P.E. Hopkins, C.M. Reinke, M.F. Su, R.H. Olsson III, E.A. Shaner, Z.C. Leseman, J.R. Serrano, L.M. Phinney, and I.E. Kady, Nano Lett. 11, 107–112 (2011).CrossRefGoogle Scholar
  4. 4.
    S. Mazumder and A. Majumdar, J. Heat Transfer 123, 749 (2001).CrossRefGoogle Scholar
  5. 5.
    D. Lacroix, K. Joulain, and D. Lemonnier, Phys. Rev. B 72, 064305 (2005).CrossRefGoogle Scholar
  6. 6.
    http://www.globaltcad.com.. Accessed 31 July 2014
  7. 7.
    M.G. Holland, Phys. Rev. 132, 2461–2471 (1963).CrossRefGoogle Scholar
  8. 8.
    E. Pop, R.W. Dutton, and K.E. Goodson, J. Appl. Phys. 96, 4998 (2004).CrossRefGoogle Scholar
  9. 9.
    C. Jeong, S. Datta, and M. Lundstrom, J. Appl. Phys. 111, 093708 (2012).CrossRefGoogle Scholar
  10. 10.
    M.-H. Bae, Z. Li, Z. Aksamija, P.N. Martin, F. Xiong, Z.-Y. Ong, I. Knezevic, and E. Pop, Nat. Commun. 4, 1734 (2013).CrossRefGoogle Scholar
  11. 11.
    K. Esfarjani, G. Chen, and H. Stokes, Phys. Rev. B 84, 085204 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • Stefanie Wolf
    • 1
  • Neophytos Neophytou
    • 1
    • 2
  • Zlatan Stanojevic
    • 1
  • Hans Kosina
    • 1
  1. 1.Institute for MicroelectronicsTechnical University of ViennaViennaAustria
  2. 2.School of EngineeringUniversity of WarwickCoventryUK

Personalised recommendations