Skip to main content
Log in

Investigation of the Growth of Intermetallic Compounds Between Cu Pillars and Solder Caps

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In flip chip applications, Cu pillars with solder caps are regarded as next-generation electronic interconnection technology, because of high input/output density. However, because of diffusion and reaction of Sn and Cu during the high-temperature reflow process, intermetallic compounds (IMC) are formed, and grow, at the interface between the cap and the pillar. Understanding the growth behavior of interfacial IMC is critical in the design of solder interconnections, because excessive growth of IMC can reduce the reliability of connections. In this study, the growth of IMC during thermal cycling, an accelerated method of testing the service environment of electronic devices, was studied by use of focused ion beam–scanning electron microscopy. Under alternating high and low-temperature extremes, growth of Cu6Sn5 (η-phase) and Cu3Sn (ε-phase) IMC was imaged and measured as a function of the number of cycles. The total IMC layer grew significantly thicker but became more uniform during thermal cycling. The Cu3Sn layer was initially thinner than the Cu6Sn5 layer but outgrew the Cu6Sn5 layer after 1000 cycles. It was found that, with limited Cu and Sn diffusion, consumption of Cu6Sn5 for growth of the Cu3Sn layer can result in a thinner Cu6Sn5 layer after thermal cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Asgari, 27th Annual IEEE/SEMI International, (2002), pp. 18–22.

  2. J.H. Lau, Flip Chip Technologies (McGraw-Hill Professional, 1995), pp. 25–28.

  3. V. Eveloy, S. Ganesan, Y. Fukuda, J. Wu, and M.G. Pecht, IEEE Trans. Compon. Packag. Technol. 28, 884–894 (2005).

    Article  Google Scholar 

  4. B. Kim and T. Ritzdorf, J. Electrochem. Soc. 150, C577–C584 (2003).

    Article  Google Scholar 

  5. M. Datta, Electrochim. Acta 48, 2975–2985 (2003).

    Article  Google Scholar 

  6. C.E. Ho, S.C. Yang, and C.R. Kao, Lead-Free Electronic Solders, (Berlin: Springer, 2007), pp. 155–174.

  7. M. Abtew and G. Selvaduray, Mater. Sci. Eng. R 27, 95–141 (2000).

    Article  Google Scholar 

  8. F. Wafula, L. Yin, P. Borgesen, D. Andala, and N. Dimitrov, J. Electron. Mater. 41, 1898–1906 (2012).

    Article  Google Scholar 

  9. L. Yin, F. Wafula, N. Dimitrov, and P. Borgesen, J. Electron. Mater. 41, 302–312 (2012).

    Article  Google Scholar 

  10. H. Xiao, X.Y. Li, Y.X. Zhu, J.L. Yang, J. Chen, and F. Guo, J.␣Mater. Sci. Mater. Electron. 24, 2527–2536 (2013).

    Article  Google Scholar 

  11. J.-W. Yoon, B.-I. Noh, Y.-H. Lee, H.-S. Lee, and S.-B. Jung, Microelectron. Reliab. 48, 1864–1874 (2008).

    Article  Google Scholar 

  12. A. Choubey, H. Yu, M. Osterman, M. Pecht, F. Yun, L. Yonghong, and X. Ming, J. Electron. Mater. 37, 1130–1138 (2008).

    Article  Google Scholar 

  13. X.Y. Li, F.H. Li, F. Guo, and Y.W. Shi, J. Electron. Mater. 40, 51–61 (2011).

    Article  Google Scholar 

  14. J. S. S. T. ASSOCIATION, (2005).

  15. J.-C. Lin, W. Heeschen, J. Reffner, and J. Hook, Microsc. Microanal. 18, 266–271 (2012).

    Article  Google Scholar 

  16. W.S. Rasband, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2012.

  17. B. Ebersberger and C. Lee, ECTC, (2011).

  18. H.F. Zou, Q.K. Zhang, and Z.F. Zhang, J. Electron. Mater. 40, 1542–1548 (2011).

    Article  Google Scholar 

  19. G. Zeng, S.B. Xue, L. Zhang, L.L. Gao, W. Dai, and J.D. Luo, J. Mater. Sci. Mater. Electron. 21, 421–440 (2010).

    Article  Google Scholar 

  20. K.S. Kim, S.H. Huh, and K. Suganuma, Mater. Sci. Eng. A 333, 106–114 (2002).

    Article  Google Scholar 

  21. B.J. Kim, G.T. Lim, J. Kim, K. Lee, Y.B. Park, and Y.C. Joo, Electron. Compon. C, pp. 336–340 (2008).

  22. J. Shen, M. Zhao, P. He, and Y. Pu, J. Alloy Compd. 574, 451–458 (2013).

    Article  Google Scholar 

  23. H.K. Kim and K.N. Tu, Phys. Rev. B 53, 16027–16034 (1996).

    Article  Google Scholar 

  24. P.L. Tu, Y.C. Chan, K.C. Hung, and J.K.L. Lai, Scripta Mater. 44, 317–323 (2001).

    Article  Google Scholar 

  25. B. Chao, S.H. Chae, X.F. Zhang, K.H. Lu, J. Im, and P.S. Ho, Acta Mater. 55, 2805–2814 (2007).

    Article  Google Scholar 

  26. K.N. Tu, Mater. Chem. Phys. 46, 217–223 (1996).

    Article  Google Scholar 

  27. K.N. Tu and R.D. Thompson, Acta Metall. 30, 947–952 (1982).

    Article  Google Scholar 

  28. H.L.J. Pang, K.H. Tan, X.Q. Shi, and Z.P. Wang, Mater. Sci. Eng. A 307, 42–50 (2001).

    Article  Google Scholar 

  29. P.J. Shang, Z.Q. Liu, X.Y. Pang, D.X. Li, and J.K. Shang, Acta Mater. 57, 4697–4706 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge William Heeschen and Charlie Wood for discussion of image analysis and FIB–SEM microscopy, respectively. We also thank the Advanced Packaging Technologies Metallization R&D teams for sample preparation and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui-Ching Lin.

Additional information

Jui-Ching Lin and Yi Qin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, JC., Qin, Y. & Woertink, J. Investigation of the Growth of Intermetallic Compounds Between Cu Pillars and Solder Caps. J. Electron. Mater. 43, 4134–4145 (2014). https://doi.org/10.1007/s11664-014-3318-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3318-8

Keywords

Navigation