Advertisement

Journal of Electronic Materials

, Volume 43, Issue 11, pp 3898–3904 | Cite as

Fabrication of Relaxer-Based Piezoelectric Energy Harvesters Using a Sacrificial Poly-Si Seeding Layer

  • E. M. A. Fuentes-Fernandez
  • A. M. Salomon-Preciado
  • B. E. Gnade
  • M. A. Quevedo-Lopez
  • P. Shah
  • H. N. AlshareefEmail author
Article

Abstract

The effect of a polycrystalline silicon (poly-Si) seeding layer on the properties of relaxor Pb(Zr0.53,Ti0.47)O3–Pb(Zn1/3,Nb2/3)O3 (PZT–PZN) thin films and energy-harvesting cantilevers was studied. We deposited thin films of the relaxor on two substrates, with and without a poly-Si seeding layer. The seeding layer, which also served as a sacrificial layer to facilitate cantilever release, was found to improve morphology, phase purity, crystal orientation, and electrical properties. We attributed these results to reduction of the number of nucleation sites and, therefore, to an increase in relaxor film grain size. The areal power density of the wet-based released harvester was measured. The power density output of the energy harvester with this relaxor composition and the poly-Si seeding layer was 325 μW/cm2.

Keywords

Energy harvesting piezoelectric relaxor perovskite cantilever integration 

Notes

Acknowledgements

The authors would like to thank the National Science Foundation for the Phase I STTR #0810391 and Phase IB #0937831 grants supplemented by the Texas Emerging Technology Fund seed grant (March 2008–Sept 2009). The research reported here was also supported by King Abdullah University of Science and Technology.

References

  1. 1.
    I.R. Henderson, Piezoelectric Ceramics: Principles and Applications (Mackeyville: APC International Ltd., 2002), pp. 23–30.Google Scholar
  2. 2.
    A. Bell, Frontiers of Ferroelectricity (New York, USA: Springer, 2007), p. 13.CrossRefGoogle Scholar
  3. 3.
    S. Priya and D.J. Inman, Energy Harvesting Technologies (New York, USA: Springer, 2009), pp. 129–207.CrossRefGoogle Scholar
  4. 4.
    S. Priya, C.-T. Chen, D. Fye, and J. Zahnd, Jpn. J. Appl. Phys. 44, L104 (2005).CrossRefGoogle Scholar
  5. 5.
    S. Priya, J. Electroceram. 19, 167 (2007).CrossRefGoogle Scholar
  6. 6.
    S.P. Beeby, M.J. Tudor, and N.M. White, Meas. Sci. Technol. 17, R175 (2006).CrossRefGoogle Scholar
  7. 7.
    X. Bai, Y. Wen, J. Yang, P. Li, J. Qiu, and Y. Zhu, J. Appl. Phys. 111, 07A938 (2012).Google Scholar
  8. 8.
    R. Amirtharajah and A.P. Chandrakasan, IEEE J. Solid-State Circuits 33, 687 (1998).CrossRefGoogle Scholar
  9. 9.
    P.D. Mitcheson, P. Miao, B.H. Stark, E.M. Yeatman, A.S. Holmes, and T.C. Green, Sens. Actuators A 115, 523 (2004).CrossRefGoogle Scholar
  10. 10.
    S. Roundy, P.K. Wright, and J. Rabaey, Comput. Commun. 26, 1131 (2003).CrossRefGoogle Scholar
  11. 11.
    W. Lei and F.G. Yuan, Smart Mater. Struct. 17, 045009 (2008).CrossRefGoogle Scholar
  12. 12.
    J. Chen, G. Zhu, W. Yang, Q. Jing, P. Bai, Y. Yang, T.-C. Hou, and Z.L. Wang, Adv. Mater. 25, 6094 (2013).CrossRefGoogle Scholar
  13. 13.
    E. Fuentes-Fernandez, L. Baldenegro-Perez, M. Quevedo-Lopez, B. Gnade, A. Hande, P. Shah, and H.N. Alshareef, Solid-State Electron. 63, 89 (2011).CrossRefGoogle Scholar
  14. 14.
    L.A. Baldenegro-Perez, W. Debray-Mechtaly, E. Fuentes-Fernandez, M.A. Quevedo-Lopez, H.N. Alshareef, P. Shah, and B.A. Gnade, Mater. Sci. Forum 644, 97 (2010).CrossRefGoogle Scholar
  15. 15.
    E. Fuentes-Fernandez, W. Debray-Mechtaly, M.A. Quevedo-Lopez, B. Gnade, A. Rajasekaran, A. Hande, P. Shah, and H.N. Alshareef, J. Electron. Mater. 40, 85 (2011).CrossRefGoogle Scholar
  16. 16.
    A. Hajati and S.-G. Kim, Appl. Phys. Lett. 99, 083105 (2011).CrossRefGoogle Scholar
  17. 17.
    S.-H. Kim, Y.-S. Choi, C.-E. Kim, and D.-Y. Yang, Thin Solid Films 325, 72 (1998).CrossRefGoogle Scholar
  18. 18.
    S. Priya, H.-W. Kim, and K. Uchino, J. Am. Ceram. Soc. 87, 1907 (2004).CrossRefGoogle Scholar
  19. 19.
    V. Raghunathan, C. Schurgers, P. Sung, and M.B. Srivastava, IEEE Signal Process. Mag. 19, 40 (2002).CrossRefGoogle Scholar
  20. 20.
    P.D. Mitcheson, T.C. Green, E.M. Yeatman, and A.S. Holmes, J. Microelectromech. Syst. 13, 429 (2004).CrossRefGoogle Scholar
  21. 21.
    A. Erturk and D.J. Inman, Smart Mater. Struct. 18, 025009 (2009).CrossRefGoogle Scholar
  22. 22.
    W.J. Choi, Y. Jeon, J.H. Jeong, R. Sood, and S.G. Kim, J. Electroceram. 17, 543 (2006).CrossRefGoogle Scholar
  23. 23.
    W. Yang, J. Chen, G. Zhu, X. Wen, P. Bai, Y. Su, Y. Lin, and Z. Wang, Nano Res. 6, 880 (2013).CrossRefGoogle Scholar
  24. 24.
    S. Roundy and P.K. Wright, Smart Mater. Struct. 13, 1131 (2004).CrossRefGoogle Scholar
  25. 25.
    Y.B. Jeon, R. Sood, J.h. Jeong, and S.G. Kim, Sens. Actuators A 122, 16 (2005).CrossRefGoogle Scholar
  26. 26.
    H.N. Al-Shareef, K.R. Bellur, O. Auciello, X. Chen, and A.I. Kingon, Thin Solid Films 252, 38 (1994).CrossRefGoogle Scholar
  27. 27.
    E.M.A. Fuentes-Fernandez, W. Debray-Mechtaly, M.A. Quevedo-Lopez, B. Gnade, E. Leon-Salguero, P. Shah, and H.N. Alshareef, Smart Mater. Res. 2012, 9 (2012).Google Scholar
  28. 28.
    C. Zorman, M. Mehregany, Springer Handbook of Nanotechnology, ed. B. Bhushan, (Berlin: Springer, 2004), pp. 203.Google Scholar
  29. 29.
    D. Dimos, M.V. Raymond, R.W. Schwartz, H.N. Al-Shareef, and C.H. Mueller, J. Electroceram. 1, 145 (1997).CrossRefGoogle Scholar
  30. 30.
    G.W. Farnell, I.A. Cermak, P. Silverster, and S.K. Wong, IEEE Trans. Sonics Ultrason. Ind. Eng. Chem. 17, 188 (1970).CrossRefGoogle Scholar
  31. 31.
    H. Fan, S.-H. Lee, C.-B. Yoon, G.-T. Park, J.-J. Choi, and H.-E. Kim, J. Eur. Ceram. Soc. 22, 1699 (2002).CrossRefGoogle Scholar
  32. 32.
    M.L. Calzada, M. Algueró, A. Santos, M. Stewart, M.G. Cain, and L. Pardo, J. Mater. Res. 24, 526 (2009).CrossRefGoogle Scholar
  33. 33.
    T. Haccart, E. Cattan, and D. Remiens, Semicond. Phys. Quantum Electron. Optoelectron. 5, 78 (2002).Google Scholar
  34. 34.
    H. Xiyun, Z. Xia, Z. Xinsen, Q. Pinsun, C. Wenxiu, and D. Aili, J. Phys. Conf. Ser. 152, 012068 (2009).CrossRefGoogle Scholar
  35. 35.
    N. Wongdamnern, N. Triamnak, M. Unruan, K. Kanchiang, A. Ngamjarurojana, S. Ananta, Y. Laosiritaworn, and R. Yimnirun, Phys. Lett. A 374, 391 (2010).CrossRefGoogle Scholar
  36. 36.
    R. Yimnirun, N. Wongdamnern, N. Triamnak, M. Unruan, A. Ngamjarurojana, S. Ananta, and Y. Laosiritaworn, J. Appl. Phys. 103, 086105 (2008).CrossRefGoogle Scholar
  37. 37.
    K. Tanaka, T. Kubota, and Y. Sakabe, Sens. Actuators A 96, 179 (2002).CrossRefGoogle Scholar
  38. 38.
    P. Muralt, J. Appl. Phys. 100, 051605 (2006).Google Scholar
  39. 39.
    T. Maeder, P. Muralt, L. Sagalowicz, I. Reaney, M. Kohli, A. Kholkin, and N. Setter, Appl. Phys. Lett. 68, 776 (1996).CrossRefGoogle Scholar
  40. 40.
    P. Muralt, T. Maeder, L. Sagalowicz, S. Hiboux, S. Scalese, D. Naumovic, R.G. Agostino, N. Xanthopoulos, H.J. Mathieu, L. Patthey, and E.L. Bullock, J. Appl. Phys. 83, 3835 (1998).CrossRefGoogle Scholar
  41. 41.
    A. Katsuhiro, F. Yukio, N. Ken, and N. Akitoshi, Jpn. J. Appl. Phys. 34, 192 (1995).CrossRefGoogle Scholar
  42. 42.
    E. Schulz, Acta Polym. 31, 216 (1980).CrossRefGoogle Scholar
  43. 43.
    H. Reiss, J. Chem. Phys. 18, 840 (1950).CrossRefGoogle Scholar
  44. 44.
    M. Volmer and A. Weber, Z. Phys. Chem. 119, 277 (1925).Google Scholar
  45. 45.
    B.A. Tuttle, T.J. Garino, J.A. Voight, T.J. Headley, D. Dimos, and M.O. Eatough, Science and Technology of Electroceramic Thin Films (The Netherlands: Kluwer Academic Publishers, 1995), pp. 427–437.Google Scholar
  46. 46.
    S. Trolier-McKinstry and P. Muralt, J. Electroceram. 12, 7 (2004).CrossRefGoogle Scholar
  47. 47.
    N. Kim, (Ph.D. thesis, The Pennsylvania State University, University Park, PA, 1994).Google Scholar
  48. 48.
    T.M. Shaw, S. Trolier-McKinstry, and P.C. McIntyre, Annu. Rev. Mater. Sci. 30, 263 (2000).CrossRefGoogle Scholar
  49. 49.
    M.H. Frey and D.A. Payne, Phys. Rev. B 54, 3158 (1996).CrossRefGoogle Scholar
  50. 50.
    G. Arlt, D. Hennings, and G. de With, J. Appl. Phys. 58, 1619 (1985).CrossRefGoogle Scholar
  51. 51.
    X. Tian-Bing, J.S. Emilie, K. Jin Ho, Z. Lei, Z. Wanlu, and T. Xiudong, J. Xiaoning Smart Mater. Struct. 22, 065015 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • E. M. A. Fuentes-Fernandez
    • 1
  • A. M. Salomon-Preciado
    • 1
  • B. E. Gnade
    • 1
  • M. A. Quevedo-Lopez
    • 1
  • P. Shah
    • 2
  • H. N. Alshareef
    • 3
    Email author
  1. 1.University of Texas at DallasRichardsonUSA
  2. 2.Texas Micro Power Inc.DallasUSA
  3. 3.Materials Science & EngineeringKing Abdullah University of Science & Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations